Answer:

Explanation:
Mass of the cable car, m = 5800 kg
It goes 260 m up a hill, along a slope of 
Therefore vertical elevation of the car = 
Now, when you get into the cable car, it's velocity is zero, that is, initial kinetic energy is zero (since K.E. =
). Similarly as the car reaches the top, it halts and hence final kinetic energy is zero.
Therefore the only possible change in the cable car system is the change in it's gravitational potential energy.
Hence, total change in energy = mgh = 
where, g = acceleration due to gravity
h = height/vertical elevation
The quantity that has a magnitude of zero when the ball is at the highest point in its trajectory is
the vertical velocity.
In fact, the motion of the ball consists of two separate motions:
- the horizontal motion, on the x-axis, which is a uniform motion with constant velocity

, where

- the vertical motion, on the y-axis, which is a uniformly accelerated motion with constant acceleration

directed downwards, and with initial velocity

. Due to the presence of the acceleration g on the vertical direction (pointing in the opposite direction of the initial vertical velocity), the vertical velocity of the ball decreases as it goes higher, up to a point where it becomes zero and it reverses its direction: when the vertical velocity becomes zero, the ball has reached its maximum height.
A campfire being lighted and plants converting carbon-dioxide and water into glucose and oxygen are both forms of chemical change.
Therefore, the answer is:
B. Both are examples of chemical change.
The mechanical advantage of an inclined plane is
(Length of the incline) / (its height)
= (10m) / (1m)
= 10 .
It's the same for any load, and doesn't depend on the mass that you're trying to move up or down the ramp.
Answer:
The number of electrons is 
(D) is correct option.
Explanation:
Given that,
Battery capacity = 750 mA-h
Time t= 8 hours
Time t'=3 hours
We need to calculate the battery capacity


We need to calculate the number of electrons in 1 C Li
Using formula for number of electron



We need to calculate the number of electron in 2700 C

The total number of electrons battery can deliver in 8 hours

We need to calculate the number of electron in 3 hours
Using formula of number of electrons

Put the value into the formula


Hence, The number of electrons is 