The name of the structures that some protists form to move are flagella, which are like long moving hairs.
<span>The answer depends of the kind of non-randommating. If the non-random mating is the kind of positive assortative mating then it tends to increase the frequencies of homozygous genotypes. Positive assortative mating when individuals mate with other individuals like themselves. If the non-random mating is the kind of negative assortative mating, then the effect is the opposite as of the positive assortative mating, this is it tends to decrease the homozygous genotypes.</span>
Therefore, Wendy's genotype must be bb and her father's must be Bb.
The genotype is your total heritable hereditary character; it is your one of a kind genome that would be uncovered by individual genome sequencing. In any case, the word genotype can likewise allude just to a specific quality or set of qualities conveyed by a person. For instance, in the event that you convey a change that is connected to diabetes, you may allude to your genotype just as for this transformation without thought of the various quality variations that you may convey.
Answer:
The correct answer would be B) 3 deaths, 6 births, 5 immigration, 7 emigration.
Explanation:
Answer:
a) The response indicates that a pH below or above this range will most likely cause enolase to denature/change its shape and be less efficient or unable to catalyze the reaction.
b)The response indicates that the appropriate negative control is to measure the reaction rate (at the varying substrate concentrations) without any enzyme present.
c)The response indicated that the enolase has a more stable/functional/correct/normal protein structure at the higher temperature of 55°C than at 37°C because the enzyme is from an organism that is adapted to growth at 55°C.
Explanation:
Enolase catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate during both glycolysis and gluconeogenesis.In bacteria, enolases are highly conserved enzymes and commonly exist as homodimers.
The temperature optimum for enolase catalysis was 80°C, close to the measured thermal stability of the protein which was determined to be 75°C, while the pH optimum for enzyme activity was 6.5. The specific activities of purified enolase determined at 25 and 80°C were 147 and 300 U mg−1 of protein, respectively. Km values for the 2-phosphoglycerate/phosphoenolpyruvate reaction determined at 25 and 80°C were 0.16 and 0.03 mM, respectively. The Km values for Mg2+ binding at these temperatures were 2.5 and 1.9 mM, respectively.
Enolase-1 from Chloroflexus aurantiacus (EnoCa), a thermophilic green non-sulfur bacterium that grows photosynthetically under anaerobic conditions. The biochemical and structural properties of enolase from C. aurantiacus are consistent with this being thermally adapted.