Answer:
MCl₂
Explanation:
The formula for boiling point elevation can be used to find x. The "complete dissociation" means there will be an ion of M and x ions of Cl in the solution. The number of moles of solute will be 30.2 grams divided by the molecular weight of MClx, where x is the variable we're trying to find.

Then the formula for the salt is MCl₂.
Answer:
There are
17.01
Explanation:
The chemical formula for calcium phosphate is
Ca
3
(PO
4
)
2
. This means that in one mole of calcium phosphate, there are three calcium ions and two phosphate ions.
Answer:
Rank the following chemical species from lowest absolute entropy (So) (1) to highest absolute entropy (5) at 298 K?
a. Al (s)
b. H2O (l)
c. HCN (g)
d. CH3COOH (l)
e. C2H6 (g)
Explanation:
Entropy is the measure of the degree of disorderness.
In solids, the entropy is very less compared to liquids and gases.
The entropy order is:
solids<liquids<gases
Among the given substances, water in liquid form has a strong intermolecular H-bond.
So, it has also less entropy.
Next acetic acid.
Between the gases, HCN, and ethane, ethane has more entropy due to very weak intermolecular interactions.
HCN has slight H-bonding in IT.
Hence, the entropy order is:
Al(s) < CH3COOH (l) <H2O(l) < HCN(g) < C2H6(g)
Answer:
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions.
Explanation:
The student have in solution Ag⁺ and Cu²⁺ ions but he just want to analyze the silver, that means he need to separate ions.
Centrifuging the solution to isolate the heavier ions <em>FALSE </em>Centrifugation allows the separation of a suspension but Ag⁺ and Cu²⁺ are both soluble in water.
Adding enough base solution to bring the pH up to 7.0 <em>FALSE </em>At pH = 7,0 these ions are soluble in water and its separation will not be possible.
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions <em>TRUE </em>For example, the addition of Cl⁻ will precipitate the Ag⁺ as AgCl(s) allowing its separation.
Evaporating the solution to recover the dissolved nitrates. <em>FALSE</em> . Thus, you will obtain the nitrates of these ions but will be mixed doing impossible its separation.
I hope it helps!
Answer:
Half life = 1600 years
Explanation:
Given data:
Total mass of sample = 45.00 g
Mass remain = 5.625 g
Time period = 4800 years
Half life of radium-226 = ?
Solution:
First of all we will calculate the number of half lives passes,
At time zero 45.00 g
At first half life = 45.00 g/ 2= 22.5 g
At 2nd half life = 22.5 g/ 2 = 11.25 g
At 3rd half life = 11.25 g/ 2= 5.625 g
Half life:
Half life = Time elapsed / number of half lives
Half life = 4800 years / 3
Half life = 1600 years