Answer:
Explanation:
H3PO4(aq) + 3NaOH(aq) → Na3PO4(aq) + 3H2O(l)
mole of NaOH = 23.6 * 10 ⁻³L * 0.2M
= 0.00472mole
let x be the no of mole of H3PO4 required of 0.00472mole of NaOH
3 mole of NaOH required ------- 1 mole of H3PO4
0.00472mole of NaOH ----------x
cross multiply
3x = 0.0472
x = 0.00157mole
[H3PO4] = mole of H3PO4 / Vol. of H3PO4
= 0.00157mole / (10*10⁻³l)
= 0.157M
<h3>The concentration of unknown phosphoric acid is 0.157M</h3>
I believe the correct answer from the choices listed above is option B. The stair-step line between the pink squares and the yellow squares separates the metals <span>from the nonmetals. Hope this answers the question. Have a nice day.</span>
Answer:
On the opposite side of the rock.
Explanation:
Answer: The molar concentration of sulfuric acid in the original sample is 1.943 M
Explanation:
To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


Now to calculate the molarity of original solution:


Thus the molar concentration of sulfuric acid in the original sample is 1.943 M
Answer:
40 g
See explaination
Explanation:
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the fluid that the body displaces.
Check attachment for the detailed step by step solution of the given problem.