answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liberstina [14]
2 years ago
8

Identical satellites X and Y of mass m are in circular orbits around a planet of mass M. The radius of the planet is R. Satellit

e X has an orbital radius of 3R, and satellite Y has an orbital radius of 4R. The kinetic energy of satellite X is Kx.
1) In terms of Kx, the gravitational potential energy of the planet-satellite X system is
(A) -2Kx
(B) -Kx
(C) -Kx/2
(D) Kx/2
(E) 2Kx

2) Satellite x is moved to the same orbit as satellite Y by a force doing work on the satellite. In terms of Kx, the work done on satellite X by the force is
(A) -Kx/2
(B) -Kx/4
(C) 0
(D) +Kx/4
(E) +Kx/2

Show the work for each question.
Physics
1 answer:
GrogVix [38]2 years ago
3 0

Answer:

1) C

2) E

Explanation:

You might be interested in
A hot air balloon must be designed to support a basket, cords, and one person for a total payload weight of 1300 N plus the addi
RSB [31]

Answer:

r = 4.44 m

Explanation:

 

For this exercise we use the Archimedes principle, which states that the buoyant force is equal to the weight of the dislodged fluid

         B = ρ g V

Now let's use Newton's equilibrium relationship

         B - W = 0

         B = W

The weight of the system is the weight of the man and his accessories (W₁) plus the material weight of the ball (W)

         σ = W / A

         W = σ A

The area of ​​a sphere is

           A = 4π r²

       W = W₁ + σ 4π r²

The volume of a sphere is

           V = 4/3 π r³

Let's replace

     ρ g 4/3 π r³ = W₁ + σ 4π r²

If we use the ideal gas equation

     P V = n RT

    P = ρ RT

    ρ = P / RT

 

    P / RT g 4/3 π r³ - σ 4 π r² = W₁

    r² 4π (P/3RT  r - σ) = W₁

Let's replace the values

     r² 4π (1.01 10⁵ / (3 8.314 (70 + 273)) r - 0.060) = 13000

     r² (11.81 r -0.060) = 13000 / 4pi

     r² (11.81 r - 0.060) = 1034.51

As the independent term is very small we can despise it, to find the solution

       r = 4.44 m

3 0
2 years ago
1) A fan is to accelerate quiescent air to a velocity of 8 m/s at a rate of 9 m3/s. Determine the minimum power that must be sup
azamat

Answer:

\dot{W} = 339.84 W

Explanation:

given data:

flow Q = 9 m^{3}/s

velocity = 8 m/s

density of air = 1.18 kg/m^{3}

minimum power required to supplied to the fan is equal to the POWER POTENTIAL of the kinetic energy and it is given as

\dot{W} =\dot{m}\frac{V^{2}}{2}

here \dot{m}is mass flow rate and given as

\dot{m} = \rho*Q

\dot{W} =\rho*Q\frac{V^{2}}{2}

Putting all value to get minimum power

\dot{W} =1.18*9*\frac{8^{2}}{2}

\dot{W} = 339.84 W

7 0
2 years ago
The graph indicates Linda’s walk.
Sedaia [141]
I think the right answer is the first one. If she stops moving her Position does not change any more-and the Graph Shows that after 6 seconds she stays at the Position of 5 m. If she Went Back to the start point the Graph would have Developed Back to 0m(decreased).
3 0
2 years ago
Read 2 more answers
The density of aluminum is 2.7 × 103 kg/m3 . the speed of longitudinal waves in an aluminum rod is measured to be 5.1 × 103 m/s.
andrey2020 [161]
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2. So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density. So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave. Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>
5 0
2 years ago
A Honda Civic travels in a straight line along a road. The car’s distance x from a stop sign is given as a function of time t by
aleksklad [387]

a) Average velocity: 2.8 m/s

b) Average velocity: 5.2 m/s

c) Average velocity: 7.6 m/s

Explanation:

a)

The position of the car as a function of time t is given by

x(t)=\alpha t^2 - \beta t^3

where

\alpha = 1.50 m/s^2

\beta = 0.05 m/s^3

The average velocity is given by the ratio between the displacement and the time taken:

v=\frac{\Delta x}{\Delta t}

The position at t = 0 is:

x(0)=\alpha \cdot 0^2 - \beta \cdot 0^3 = 0

The position at t = 2.00 s is:

x(2)=\alpha \cdot 2^2 - \beta \cdot 2^3=5.6 m

So the displacement is

\Delta x = x(2)-x(0)=5.6-0=5.6 m

The time interval is

\Delta t = 2.0 s - 0 s = 2.0 s

And so, the average velocity in this interval is

v=\frac{5.6 m}{2.0 s}=2.8 m/s

b)

The position at t = 0 is:

x(0)=\alpha \cdot 0^2 - \beta \cdot 0^3 = 0

While the position at t = 4.00 s is:

x(4)=\alpha \cdot 4^2 - \beta \cdot 4^3=20.8 m

So the displacement is

\Delta x = x(4)-x(0)=20.8-0=20.8 m

The time interval is

\Delta t = 4.0 - 0 = 4.0 s

So the average velocity here is

v=\frac{20.8}{4.0}=5.2 m/s

c)

The position at t = 2 s is:

x(2)=\alpha \cdot 2^2 - \beta \cdot 2^3=5.6 m

While the position at t = 4 s is:

x(4)=\alpha \cdot 4^2 - \beta \cdot 4^3=20.8 m

So the displacement is

\Delta x = 20.8 - 5.6 = 15.2 m

While the time interval is

\Delta t = 4.0 - 2.0 = 2.0 s

So the average velocity is

v=\frac{15.2}{2.0}=7.6 m/s

Learn more about average velocity:

brainly.com/question/8893949

brainly.com/question/5063905

#LearnwithBrainly

6 0
2 years ago
Other questions:
  • Which radioactive isotope would take the least amount of time to become stable? rubidium-91 iodine-131 cesium-135 uranium-238
    5·2 answers
  • A space shuttle orbits Earth at a speed of 21,000 km/hr. How far does it go in 3.5 hrs?
    14·1 answer
  • The energy gaps between the valence and conduction bands are called band gaps. For silicon, the band gap is 1.1 eV; for fused si
    6·1 answer
  • A kayaker needs to paddle north across a 100-m-wide harbor. the tide is going out, creating a tidal current that flows to the ea
    14·2 answers
  • two forces are acting on a wheelbarrow. One force is pushing to the right and an equal force is pushing to the left. What can yo
    15·2 answers
  • A 1,300 kg wrecking ball hits the building at 1.07 m/s2.
    11·2 answers
  • a student wants to push a box of books with the mass of 50 kg in 3 m horizontally towards the location of the shelves where the
    11·1 answer
  • To hoist himself into a tree, a 72.0-kg man ties one end of a nylon rope around his waist and throws the other end over a branch
    14·1 answer
  • A block moves at 5 m/s in the positive x direction and hits an identical block, initially at rest. A small amount of gunpowder h
    10·1 answer
  • Calculate the force of gravity between two objects of masses 1300 kg and 7800 kg, which are 0.23 m apart.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!