Answer:
The cannonball fly horizontally before it strikes the ground, S = 323.25 m
Explanation:
Given data,
The height of the cliff, h = 80 m
The horizontal velocity of the cannonball, Vₓ = 80 m/s
The range of the cannon ball with initial vertical velocity is zero is given by the formula,


S = 323.25 m
Hence, the cannonball fly horizontally before it strikes the ground, S = 323.25 m
Answer:
The charge is moving with the velocity of
.
Explanation:
Given that,
Charge 
Angle = 35°
Magnetic field strength 
Magnetic force 
We need to calculate the velocity.
The Lorentz force exerted by the magnetic field on a moving charge.
The magnetic force is defined as:


Where,
F = Magnetic force
q = charge
B = Magnetic field strength
v = velocity
Put the value into the formula




Hence, The charge is moving with the velocity of
.
We have that for the Question "the acceleration of the object at time t = 0.7 s is most nearly equal to which of the following?"
- it can be said that the acceleration of the object at time t = 0.7 s is most nearly equal to the slope of the line connecting the origin and the point where the graph where the graph crosses the 0.7s grid line
From the question we are told
the acceleration of the object at time t = 0.7 s is most nearly equal to which of the following?
Generally the equation for the Force is mathematically given as
F=\frac{F}{dx}
Therefore
F=-kdx
k=600Nm^{-1}
now
K.E=0.5x ds^2
K.E=600*(-0.1^2)
K.E=3J
Therefore
the acceleration of the object at time t = 0.7 s is most nearly equal to the slope of the line connecting the origin and the point where the graph where the graph crosses the 0.7s grid line
For more information on this visit
brainly.com/question/23379286