Answer:
a=7
Step-by-step explanation:
The image is rendered and attached below.
Triangle WXY is an Isosceles right triangle, since WX=XY.
First, we determine the length of WY using Pythagoras Theorem.

Since triangle WXY is Isosceles, 

Therefore:
Triangle WYZ is a right triangle with WZ as the hypothenuse.
Applying Pythagoras Theorem

Answer:
c. 1 and 3
Step-by-step explanation:
To quickly solve this problem, we can use a graphing tool or a calculator to plot each equation.
Please see the attached image below, to find more information about the graph
s
The equations are:
1) y = sin (3x + π/6)
2) y = cos (3x - π/6)
3) y = cos (3x - π/3)
Looking at the graphs, we can see that the identical ones
are equations one and three
Correct option:
c. 1 and 3
Let stadium 1 be the one on the left and stadium 2 the one on the right.
Angle above stadium 1 is 72.9° and the angle above stadium 2 is 34.1° using the angle property of alternate angles(because both the ground and the dotted line are parallel).
For the next part we need to use the trigonometric function of tangent.
As tan x = opposite / adjacent,
Tan 72.9°=1500/ adjacent ( the ground from O to stadium 1)
Therefore the adjacent is 1500/tan 72.9°= 461.46 m( to 5 s.f.)
Same for the next angle,
Tan 34.1°=1500/ adjacent ( the ground from O to stadium 2)
Therefore, the adjacent is 1500/tan 34.1° = 2215.49 m (to 5 s.f.)
Thus, the distance between both stadiums is 2215.49-461.46= 1754.03 m
Correcting the answer to whole number gives you 1754 m which is the option C.
This question is not complete
Complete Question
A boat sails 4km on a bearing of 038 degree and then 5km on a bearing of 067 degree.(a)how far is the boat from its starting point.(b) calculate the bearing of the boat from its starting point
Answer:
a)8.717km
b) 54.146°
Step-by-step explanation:
(a)how far is the boat from its starting point.
We solve this question using resultant vectors
= (Rcos θ, Rsinθ + Rcos θ, Rsinθ)
Where
Rcos θ = x
Rsinθ = y
= (4cos38,4sin38) + (5cos67,5sin67)
= (3.152, 2.4626) + (1.9536, 4.6025)
= (5.1056, 7.065)
x = 5.1056
y = 7.065
Distance = √x² + y²
= √(5.1056²+ 7.065²)
= √75.98137636
= √8.7167296826
Approximately = 8.717 km
Therefore, the boat is 8.717km its starting point.
(b)calculate the bearing of the boat from its starting point.
The bearing of the boat is calculated using
tan θ = y/x
tan θ = 7.065/5.1056
θ = arc tan (7.065/5.1056)
= 54.145828196°
θ ≈ 54.146°