Answer:

Explanation:
Hello!
In this case, considering the given chemical reaction and the mass of the magnesium strip, following the indications of the atomic weight ratio (2.61 g Cu/1 g Mg), and keeping in mind the 1:1 mole ratio one could compute the produced mass of copper as shown below:

Best regards!
Answer : The final temperature of the solution in the calorimeter is, 
Explanation :
First we have to calculate the heat produced.

where,
= enthalpy change = -44.5 kJ/mol
q = heat released = ?
m = mass of
= 1.52 g
Molar mass of
= 40 g/mol

Now put all the given values in the above formula, we get:


Now we have to calculate the final temperature of solution in the calorimeter.

where,
q = heat produced = 1.691 kJ = 1691 J
m = mass of solution = 1.52 + 35.5 = 37.02 g
c = specific heat capacity of water = 
= initial temperature = 
= final temperature = ?
Now put all the given values in the above formula, we get:


Thus, the final temperature of the solution in the calorimeter is, 
Answer:
For dispensing, weigh it out.
Yes, a different solvent such as ethanol could be used.
Explanation:
Besides using various methods for melting the <em>tert</em>-butanol in order to pour it out and measure a given volume, the <em>tert</em>-butanol could be weighed out in a beaker using a scale. Depending on the temperature of the laboratory, the <em>tert</em>-butanol could be a solid or a liquid/solid mixture.
In general, a different solvent such as ethanol could be used in place of <em>tert</em>-butanol as long as the solvent is a low molecular weight alcohol.
Answer:
(a) Constitutional Isomers
(b) Constitutional Isomers
Explanation:
Constitutional isomers are also known with the name Structural Isomers. These are the compounds which have same chemical formula but differ in arrangement of atoms i.e. structure.
Both the compounds <em>cis-1,3-dibromocyclohexane</em> and <em>trans-1,4-dibromocyclohexane</em> have the same chemical formula
but have different structure as shown in the image below.
In the second case the compounds <em>2,3-dimethylhexane</em> and <em>2,3,3-trimethylpentane</em>, both have same chemical formula
but have different structures which is shown in the image below.
Thus it is clear that in both the groups (a) and (b) the given compounds are Constitutional Isomers.
Answer:
the mole fraction of Gas B is xB= 0.612 (61.2%)
Explanation:
Assuming ideal gas behaviour of A and B, then
pA*V=nA*R*T
pB*V=nB*R*T
where
V= volume = 10 L
T= temperature= 25°C= 298 K
pA and pB= partial pressures of A and B respectively = 5 atm and 7.89 atm
R= ideal gas constant = 0.082 atm*L/(mol*K)
therefore
nA= (pA*V)/(R*T) = 5 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 2.04 mole
nB= (pB*V)/(R*T) = 7.89 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 3.22 mole
therefore the total number of moles is
n = nA +nB= 2.04 mole + 3.22 mole = 5.26 mole
the mole fraction of Gas B is then
xB= nB/n= 3.22 mole/5.26 mole = 0.612
xB= 0.612
Note
another way to obtain it is through Dalton's law
P=pB*xB , P = pA+pB → xB = pB/(pA+pB) = 7.69 atm/( 5 atm + 7.89 atm) = 0.612