Answer:
umm.. B. a base that generates a lot of hydroxide ions in water.
Answer:
no he just repeated the steps and made more of the same cleaner my guy
Explanation:
Answer
D 160g
Explanation:
<u>Write the equation:</u>
Combustion reactions use oxygen and release water and heat, so
CH₃OH(g) + O₂(g) → CO₂(g) + H₂O(g)
Balance that:
2CH₃OH(g) + 3O₂(g) → 2CO₂(g) + 4H₂O(g)
<u>Find moles of carbon dioxide:</u>
We need to know the number of moles of CO₂. This rxn is at STP, so at STP one mole of gas = 22.4 liters.
112 L * 1 mol/22.4 L = <em>5 mol CO₂</em>
<u>Find moles of methanol:</u>
Based on the chemical equation, for every 2 mol methanol, there are 2 mol carbon dioxide. So for every 5 mol carbon dioxide, there are 5 mol methanol!
5 mol CO₂ = 5 mol CH₃OH
Molar mass of methanol: 12.01 + 3*1.008 + 16.00 + 1.008 = <em>32.04 g/mol</em>
Moles of methanol: 5 mol * 32.04 g/mol = 160.2 g methanol
≈ 160 mol methanol
Answer:
...1
...2
Explanation:
The ternary constant is given by the following equation:
The symbol XiXi, where XX is an extensive property of a homogeneous mixture and the subscript ii identifies a constituent species of the mixture, denotes the partial molar quantity of species ii defined by
![M_{i} = [\frac{d(nM)}{dn_{i} }]_{P,t,n,j}](https://tex.z-dn.net/?f=M_%7Bi%7D%20%20%3D%20%5B%5Cfrac%7Bd%28nM%29%7D%7Bdn_%7Bi%7D%20%7D%5D_%7BP%2Ct%2Cn%2Cj%7D)
This is the rate at which property X changes with the amount of species i added to the mixture as the temperature, the pressure, and the amounts of all other species are kept constant. A partial molar quantity is an intensive state function. Its value depends on the temperature, pressure, and composition of the mixture.
In a multi phase system (in this case, a ternary system), the components resolved give:

and 
Entropy Change is calculated by (Energy transferred) / (Temperature in kelvin)
deltaS = Q / T
Q = (mass)(latent heat of fusion)
Q = m(hfusion)
Q = (500g)(333J/g) = 166,500J
T(K) = 32 + 273.15 = 305.15K
deltaS = 166,500J / 305.15K
deltaS = 545.63 J/K