The basis of finding the answer to this problem is to know the electronic configuration of Fluorine. That would be: <span>[He] 2s</span>²<span> 2p</span>⁵. The valence electrons, which are the outermost electrons of the atom, are the ones that participate in bonding. <em>Since the highest orbital for F is 2p, that means the highest energy occupied would be 2.</em>
Answer:
(II) only correctly rank the bonds in terms of increasing polarity.
Explanation:
Bond polarity is proportional to difference in electronegativity between bonded atoms.
Atoms Electronegativity Bond Electronegativity difference
Cl 3.0 Cl-F 1.0
Br 2.8 Br-Cl 0.2
F 4.0 Cl-Cl 0
H 2.1 H-C 0.4
C 2.5 H-N 0.9
N 3.0 H-O 1.4
O 3.5 Br-F 1.2
I 2.7 I-F 1.3
Si 1.9 Cl-F 1.0
P 2.2 Si-Cl 1.1
Si-P 0.3
Si-C 0.6
Si-F 2.1
So, clearly, order of increasing polarity : O-H > N-H > C-H
So, (II) only correctly rank the bonds in terms of increasing polarity
First one. Coefficients are numbers that balance the equation, just like if there is an equation in math where 1=2, you need to multiply 1 by 2 to make that equation true. That's a nice jingle you can remember.
Answer:
The pH of 0.1 M BH⁺ClO₄⁻ solution is <u>5.44</u>
Explanation:
Given: The base dissociation constant:
= 1 × 10⁻⁴, Concentration of salt: BH⁺ClO₄⁻ = 0.1 M
Also, water dissociation constant:
= 1 × 10⁻¹⁴
<em><u>The acid dissociation constant </u></em>(
)<em><u> for the weak acid (BH⁺) can be calculated by the equation:</u></em>

<em><u>Now, the acid dissociation reaction for the weak acid (BH⁺) and the initial concentration and concentration at equilibrium is given as:</u></em>
Reaction involved: BH⁺ + H₂O ⇌ B + H₃O+
Initial: 0.1 M x x
Change: -x +x +x
Equilibrium: 0.1 - x x x
<u>The acid dissociation constant: </u>![K_{a} = \frac{\left [B \right ] \left [H_{3}O^{+}\right ]}{\left [BH^{+} \right ]} = \frac{(x)(x)}{(0.1 - x)} = \frac{x^{2}}{0.1 - x}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5Cleft%20%5BB%20%5Cright%20%5D%20%5Cleft%20%5BH_%7B3%7DO%5E%7B%2B%7D%5Cright%20%5D%7D%7B%5Cleft%20%5BBH%5E%7B%2B%7D%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B%28x%29%28x%29%7D%7B%280.1%20-%20x%29%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%7D%7B0.1%20-%20x%7D)





<u>Therefore, the concentration of hydrogen ion: x = 3.6 × 10⁻⁶ M</u>
Now, pH = - ㏒ [H⁺] = - ㏒ (3.6 × 10⁻⁶ M) = 5.44
<u>Therefore, the pH of 0.1 M BH⁺ClO₄⁻ solution is 5.44</u>
Answer:
The actual number of moles is 9 moles.
It is less than 15
Number of moles needed is 9 moles
Explanation:
15H2 + 10N2 ——-> 10NH3
Now from the question, we can see that the percentage yield is 60%
The percentage yield can be calculated as actual moles of H2/Theoretical moles of H2 * 100%
From the equation, we can see that the theoretical number of moles of hydrogen is 15.
Now to get the actual : 60 = x/15 * 100
x = 9
The actual number of moles is 9 moles.
It is less than 15
Number of moles needed is 9 moles