The formula to be used for this problem is as follows:
E = hc/λ, where h is the Planck's constant, c is the speed of light and λ is the wavelength. Also 1 aJ = 10⁻¹⁸ J
0.696×10⁻¹⁸ = (6.62607004×10⁻³⁴ m²·kg/s)(3×10⁸ m/s)/λ
Solving for λ,
λ = 2.656×10⁻⁷ m or <em>0.022656 nm</em>
It seems that you have missed the necessary options for us to answer this question, but anyway, here is the answer. At STP graphite and diamond are two solid forms of carbon, the statement that explains why these two forms of carbon differ in hardness is this: <span>Graphite and diamond have different molecular structures. Hope this helps.</span>
Answer:
C
Explanation:
because valence electrons are located at the last energy level
Answer:
is the approximate energy of one photon of this light.
Explanation:
Energy of the photon can be calculated by
(Planck's equation)
where,
E = energy of photon
h = Planck's constant = 
c = speed of light = 
= wavelength of light =
= frequency of the light
we have , 
Now put all the given values in the above formula, we get the energy of the photons.


is the approximate energy of one photon of this light.
The simplified solubility of glucose at 30°C is 1.25 g/g of water. Considering that the density of water at 30°C is 1 g/mL, the equivalent mass of 400 mL of water is also 400g.
The concentration of the solution in water is,
550 g/400g of water = 1.375 g glucose / g of water
Since the concentration is higher compared to the solubility of glucose at the specified temperature, it can be said that the solution is SATURATED.