answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Romashka [77]
2 years ago
14

A 5.00-A current runs through a 12-gauge copper wire (diameter 2.05 mm) and through a light bulb. Copper has 8.5 * 1028 free ele

ctrons per cubic meter. (a) How many electrons pass through the light bulb each second? (b) What is the current density in the wire? (c) At what speed does a typical electron pass by any given point in the wire? (d) If you were to use wire of twice the diameter, which of the above answers would change? Would they increase or decrease?
Physics
2 answers:
evablogger [386]2 years ago
5 0

Answer:

a)n= 3.125 x 10^{19 electrons.

b)J= 1.515 x 10^{6 A/m²

c)V_{d =1.114 x 10^{4m/s

d) see explanation

Explanation:

Current 'I' = 5A =>5C/s

diameter 'd'= 2.05 x 10^{-3 m

radius 'r' = d/2 => 1.025 x 10^{-3 m

no. of electrons 'n'= 8.5 x 10^{28}

a) the amount of electrons pass through the light bulb each second can be determined by:

I= Q/t

Q= I x t => 5 x 1

Q= 5C

As we know that: Q= ne

where e is the charge of electron i.e 1.6 x 10^{-19C

n= Q/e => 5/ 1.6 x 10^{-19

n= 3.125 x 10^{19 electrons.

b)  the current density 'J' in the wire is given by

J= I/A => I/πr²

J= 5 / (3.14 x (1.025x 10^{-3)²)

J= 1.515 x 10^{6 A/m²

c) The typical speed'V_{d' of an electron is given by:

V_{d = \frac{J}{n|q|}

    =1.515 x 10^{6 / 8.5 x 10^{28} x |-1.6 x 10^{-19|

V_{d =1.114 x 10^{4m/s

d) According to these equations,

J= I/A

V_{d = \frac{J}{n|q|} =\frac{I}{nA|q|}

If you were to use wire of twice the diameter, the current density and drift speed will change

Increase in the diameter increase the cross sectional area and decreases the current density as it has inverse relation.

Also drift velocity will decrease as it is inversely proportional to the area

 

Ilia_Sergeevich [38]2 years ago
4 0

Answer:

a) 3.1205*10^19 electron/s

b) 1.51*10^6 A/m^2

c) 1.11*10^-4 m/s

Explanation:

a) to find the number of electrons you use the current in the wire, and the following formula:

I=5.00A=5.00\frac{C}{s}\\\\1C=6.241*10^{18}e\\\\I=5.00(6.241*10^{18}e)/s=3.1205*10^{19}\frac{e}{s}

3.1205*10^19 electrons per second

b) To find the current density you use the formula:

J=\frac{I}{A}

I: current in the wire

A: cross area of the wire

J=\frac{I}{\pi r^2}=\frac{5.00A}{\pi(\frac{2.05}{2}*10^{-3})^2}=1.51*10^6\frac{A}{m^2}

c) To find the speed you use the formula for the drift speed of electrons in the wire:

I=nqv_dA\\\\v_d=\frac{I}{nqA}

n: number of free electrons

q: charge of the electron = 1.6*10^{-19}C

v_d=\frac{5.00C/s}{(8.5*10^{28}m^{-3})(1.6*10^{-19}C)(3.30*10^{-6}m^2)}=1.11*10^{-4}\frac{m}{s}

d) if the diameter of the wire is increased, the number of electron that pass trough the lighy bulb each second is the same.

The current density decreases because J=I/A. If A increases J decreases.

The drift vellocity of the electrons decreases, again, because in the formula for vd the Area is in the denominator.a

You might be interested in
A fly has a mass of 1 gram at rest. how fast would it have to be traveling to have the mass of a large suv, which is about 3000
Zigmanuir [339]

We solve this using special relativity. Special relativity actually places the relativistic mass to be the rest mass factored by a constant "gamma". The gamma is equal to 1/sqrt (1 - (v/c)^2). <span>

We want a ratio of 3000000 to 1, or 3 million to 1. 

</span>

<span>Therefore:
3E6 = 1/sqrt (1 - (v/c)^2) 
1 - (v/c)^2 = (0.000000333)^2 
0.99999999999999 = (v/c)^2 
0.99999999999999 = v/c 
<span>v= 99.999999999999% of the speed of light ~ speed of light
<span>v = 3 x 10^8 m/s</span></span></span>

8 0
2 years ago
A figure skater rotating at 5.00 rad/s with arms extended has a moment of inertia of 2.25 kg·m2. If the arms are pulled in so t
Serggg [28]

a) 6.25 rad/s

The law of conservation of angular momentum states that the angular momentum must be conserved.

The angular momentum is given by:

L=I\omega

where

I is the moment of inertia

\omega is the angular speed

Since the angular momentum must be conserved, we can write

L_1 = L_2\\I_1 \omega_1 = I_2 \omega_2

where we have

I_1 = 2.25 kg m^2 is the initial moment of inertia

\omega_1 = 5.00 rad/s is the initial angular speed

I_2 = 2.25 kg m^2 is the final moment of inertia

\omega_2 is the final angular speed

Solving for \omega_2, we find

\omega_2 = \frac{I_1 \omega_1}{I_2}=\frac{(2.25 kg m^2)(5.00 rad/s)}{1.80 kg m^2}=6.25 rad/s

b) 28.1 J and 35.2 J

The rotational kinetic energy is given by

K=\frac{1}{2}I\omega^2

where

I is the moment of inertia

\omega is the angular speed

Applying the formula, we have:

- Initial kinetic energy:

K=\frac{1}{2}(2.25 kg m^2)(5.00 rad/s)^2=28.1 J

- Final kinetic energy:

K=\frac{1}{2}(1.80 kg m^2)(6.25 rad/s)^2=35.2 J

7 0
2 years ago
As the drawing illustrates, a siren can be made by blowing a jet of air through 20 equally spaced holes in a rotating disk. The
Aneli [31]

Answer:

ω = 630.2663 = 630[rad/s]

Explanation:

Solution:

- We can tackle this question by simple direct proportion relation between angular speed for the disk to rotate a cycle that constitutes 20 holes. We will use direct relation with number of holes per cycle to compute the revolution per seconds i.e frequency of speed f.

                                  1rev(20 hole) -> 20(cycle)/rev  

                                        2006.2(cycle) -> f ?  

                              f = 2006.2/20 = 100.31rev at second  

- The relation between angular frequency and angular speed is given by:

                                 ω = 2πf

                                 ω = 2*3.14*100.31

                                 ω = 630.2663 = 630[rad/s]

4 0
2 years ago
The table shows information about four students who are running around a track. Which statement is supported by the information
Vikentia [17]

Answer:

<em>Correct option: Mohammed has less kinetic energy than Autumn.</em>

Explanation:

<u>Kinetic Energy</u>

Is the energy an object has due to its motion. If the object has a mass m and travels at a speed v, then the kinetic energy K is:

\displaystyle K=\frac{1}{2}mv^2

The information about four students includes their mass and velocity as follows:

Autumn has a mass of m1=50 kg and a velocity (magnitude) of v1=4 m/s, thus their kinetic energy is:

\displaystyle K_1=\frac{1}{2}50\cdot 4^2

K_1=400\ J

Mohammed has a mass of m2=57 kg and a velocity (magnitude) of v2=3 m/s, thus their kinetic energy is:

\displaystyle K_2=\frac{1}{2}57\cdot 3^2

K_2=256.5\ J

Lexy has a mass of m3=53 kg and a velocity (magnitude) of v3=2 m/s, thus their kinetic energy is:

\displaystyle K_3=\frac{1}{2}53\cdot 2^2

K_3=106\ J

Chiang has a mass of m4=64 kg and a velocity (magnitude) of v4=5 m/s, thus their kinetic energy is:

\displaystyle K_4=\frac{1}{2}64\cdot 5^2

K_4=800\ J

Sorted from lower kinetic energy to higher:

Lexy, Mohammed, Autumn, Chiang. Thus:

Autumn has more kinetic energy than Chiang. False

Mohammed has less kinetic energy than Autumn. True

Lexy has more kinetic energy than Mohammed. False

Chiang has less kinetic energy than Lexy. False

Correct option: Mohammed has less kinetic energy than Autumn.

3 0
2 years ago
Read 2 more answers
A circular coil of wire of 200 turns and diameter 2.0 cm carries a current of 4.0 A. It is placed in a magnetic field of 0.70 T
DerKrebs [107]

Answer:

0.087976 Nm

Explanation:

The magnetic torque (τ) on a current-carrying loop in a magnetic field is given by;

τ = NIAB sinθ     --------- (i)

Where;

N = number of turns of the loop

I = current in the loop

A = area of each of the turns

B = magnetic field

θ = angle the loop makes with the magnetic field

<em>From the question;</em>

N = 200

I = 4.0A

B = 0.70T

θ = 30°

A = π d² / 4        [d = diameter of the coil = 2.0cm = 0.02m]

A = π x 0.02² / 4 = 0.0003142m²         [taking π = 3.142]

<em>Substitute these values into equation (i) as follows;</em>

τ = 200 x 4.0 x 0.0003142 x 0.70 sin30°

τ = 200 x 4.0 x 0.0003142 x 0.70 x 0.5

τ = 200 x 4.0 x 0.0003142 x 0.70      

τ = 0.087976 Nm

Therefore, the torque on the coil is 0.087976 Nm

3 0
2 years ago
Other questions:
  • Read the lab procedure for a controlled experiment that looks at the effect of heat on the circumference of bicycle tires.
    7·2 answers
  • A plant blossoms with violet-colored flowers. The flowers appear violet because they absorb all light rays except for____ rays.
    9·2 answers
  • Brad is working on a speed problem in physics class. The problem tells him that a girl runs from her house to the park 0.05 km a
    10·2 answers
  • A crane uses a block and tackle to lift a 2200N flagstone to a height of 25m
    15·1 answer
  • A 5.0 kg cannonball is dropped from the top of a tower. It falls for 1.6 seconds before slamming into a sand pile at the base of
    8·1 answer
  • When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
    5·1 answer
  • A man runs at a velocity of 4.5 m/s for 15.0 min. When going up an increasingly steep hill, he slows down at a constant rate of
    11·1 answer
  • Two lasers, one red (with wavelength 633.0 nm) and the other green (with wavelength 532.0 nm), are mounted behind a 0.150-mm sli
    9·1 answer
  • What is the concentration of molecular oxygen (O2) in mol/L on a June day in Toronto when atmospheric pressure is 1.0 atm and th
    15·1 answer
  • The velocity of a passenger relative to a boat is -vpb. The velocity of the boat relative to the river it is moving on is vbr. T
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!