Elements are ionized because they aspire to be stable. The most stable form are the ones with full octet of electrons, the noble gases which consist of the last column in the periodic table. The rest of the elements either accept or readily donate electrons to conform to the electronic configuration that is the same with the nearest noble gas.
1. Potassium's nearest noble gas is Ar which is one electron fewer. So, when ionized, it donates 1 electron. Hence, K⁺.
2. The nearest noble gas for fluorine is Neon which is 1 electron more. Hence, it has to accept one more electron. Hence, F⁻.
<span>Carbon Monoxide.
First, determine the relative number of moles of each element by looking up the atomic weights of carbon and oxygen
Atomic weight carbon = 12.0107
Atomic weight oxygen = 15.999
Moles of Carbon = 24.50 g / 12.0107 g/mol = 2.039847802 mol
Moles of Oxygen = 32.59 g / 15.999 g/mol = 2.037002313 mol
Given that the number of moles of both carbon and oxygen are nearly identical, it wouldn't be unreasonable to think that the empirical formula for the compound is CO which also happens to be the formula for Carbon Monoxide.</span>
Reactants would be the missing word in the sentence because they make up the products in a chemical reaction
Answer:
Ionic, metal, organic
Explanation:
In this case, we have to analyze each compound:
-) 
In this compound, we have a non-metal atom (Cl) and a metal atom (Ca) . So, we will have a high electronegativity difference between these atoms, With this in mind, we will have an ionic bond. Ions can be produced:

The cation would be
and the anion is
. So, we will have an <u>ionic compound.</u>
-) 
In this case, we have a single atom. If we check the periodic table we will find this atom in the transition metals section (in the middle of the periodic table). So, this indicates that Cu (Copper) is a <u>metal.</u>
-) 
In this molecule, we have single bonds between carbon and hydrogen. The electronegativity difference between C and H are not high enough to produce ions. So, with this in mind, we will have covalent bonds. This is the main characteristic of <u>organic compounds. </u> (See figure 1)
Answer:
Groups of atoms that are added to carbon backbones and give them unique properties are known as <u>Functional Groups</u>.
Explanation:
In organic chemistry they are called as Functional Group because they are the active part of a molecule. These groups give a unique characteristic to molecule both chemically and physically. Also, each functional group represent a different class of compounds.
Examples:
S No. Functional Group Name
1 R--X Alkyl Halides
2 R--OH Alcohols
3 R--NH₂ Amines
4 R--O--R Ethers
5 R--CO--R Ketones
6 R--CO--H Aldehydes
7 R--CO--OH Carboxylic acids
8 R--CO--X Acid Halides
10 R--CO--NR₂ Acid Amides
11 R--CO-OR' Esters