answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Otrada [13]
2 years ago
15

Dos pelotas de tenis se lanzan verticalmente, hacia arriba y desde el mismo punto, con 2 s de

Physics
1 answer:
Angelina_Jolie [31]2 years ago
4 0

Answer:

Calcula la altura a la que se cruzan, si se han lanzado desde un punto situado a 1 m del

Explanation:

You might be interested in
A graduated cylinder contains 17.5 ml of water. When a metal cube is placed onto the cylinder, its water level rises to 20.3 ml
pogonyaev
If you are asking what the volume of the cube is it would be 20.3 - 17.5 ml so 2.8 ml.
3 0
2 years ago
Read 2 more answers
Which of the following represents a convex lens?<br> A. +f<br> B. -di<br> C. -f<br> D. +di
Aleonysh [2.5K]
F is the focal length of the lens. A positive f indicates a converging optical device, like a convex lens or a concave mirror.

Choice A
7 0
2 years ago
Read 3 more answers
A father demonstrates projectile motion to his children by placing a pea on his fork's handle and rapidly depressing the curved
MariettaO [177]

Answer:

4.17 m/s

Explanation:

To solve this problem, let's start by analyzing the vertical motion of the pea.

The initial vertical velocity of the pea is

u_y = u sin \theta = (7.39)(sin 69.0^{\circ})=6.90 m/s

Now we can solve the problem by applying the suvat equation:

v_y^2-u_y^2=2as

where

v_y is the vertical velocity when the pea hits the ceiling

a=g=-9.8 m/s^2 is the acceleration of gravity

s = 1.90 is the distance from the ceiling

Solving for v_y,

v_y = \sqrt{u_y^2+2as}=\sqrt{(6.90)^2+2(-9.8)(1.90)}=3.22 m/s

Instead, the horizontal velocity remains constant during the whole motion, and it is given by

v_x = u cos \theta = (7.39)(cos 69.0^{\circ})=2.65 m/s

Therefore, the speed of the pea when it hits the ceiling is

v=\sqrt{v_x^2+v_y^2}=\sqrt{2.65^2+3.22^2}=4.17 m/s

5 0
2 years ago
The famous cliff divers of Acapulco leap from a perch 35 m above the ocean. How fast are they moving when they reach the surface
Rus_ich [418]

1) 26.2 m/s

The mechanical energy of the divers at any point of their vertical motion is sum of the kinetic energy and the gravitational potential energy:

E=K+U = \frac{1}{2}mv^2 + mgh

where

m is the mass of the diver

v is the speed

g = 9.8 m/s^2 is the acceleration due to gravity

h is the height above the water

When the diver is on the cliff, v = 0 (he is at rest), so K=0 and the initial mechanical energy is just potential energy:

E_i = mgh

where h=35 m is the height of the cliff.

When the diver hits the water above, h = 0, so U=0 and the final mechanical energy is just kinetic energy:

E_f = \frac{1}{2}mv^2

since the total mechanical energy is conserved, we have

E_i = E_f\\mgh = \frac{1}{2}mv^2

And solving the equation for v, we find the speed when they reach the surface of the water:

v=\sqrt{2gh}=\sqrt{2(9.8 m/s^2)(35 m)}=26.2 m/s

2) It is converted into thermal energy of the water

When the diver enters the water, he suddenly feels another force acting against the motion of the diver: the resistance of the water. The resistance of the water acts upward, slowing down the diver until he stops.

In this process, the speed of the diver (v) decreases, and therefore the kinetic energy of the diver decreases as well, until it becomes zero.

However, this does not mean that the conservation of energy has been violated. In fact, the kinetic energy of the diver has been converted into thermal energy of the molecules of water surrounding the diver.

8 0
2 years ago
A 5.00-pF, parallel-plate, air-filled capacitor with circular plates is to be used in a circuit in which it will be subjected to
Ne4ueva [31]

Answer:

a) r=4.24cm d=1 cm

b) Q=5x10^{-10} C

Explanation:

The capacitance depends only of the geometry of the capacitor so to design in this case knowing the Voltage and the electric field

V=1.00x10^{2}v\\E=1.00x10^{4} \frac{N}{C}

V=E*d\\d=\frac{V}{E}\\d=\frac{1.0x10^{2}}{1.0x10^{4}}\\d=0.01m

The distance must be the separation the r distance can be find also using

C=\frac{Q}{V_{ab}}

But now don't know the charge these plates can hold yet so

a).

d=0.01m

C=E_{o}*\frac{A}{d}\\A=\frac{C*d}{E_{o}}

A=\frac{5pF*0.01m}{8.85x10^{-12}\frac{F}{m}}\\A=5.69x10^{-3}m^{2}

A=\pi *r^{2}\\r=\sqrt{\frac{A}{r}}\\r=\sqrt{\frac{5.64x10^{-3}m^{2} }{\pi } }  \\r=42.55x^{-3}m

b).

C=\frac{Q}{V_{ab}}

Q=C*V\\Q=5x10^{-12} F*1x10^{2}\\Q=5x10^{-10}C

8 0
2 years ago
Other questions:
  • A 1.0-kg block and a 2.0-kg block are pressed together on a horizontal frictionless surface with a compressed very light spring
    13·2 answers
  • A 100.0 mL sample of 1.020 M HCl is mixed with a 50.0 mL sample of 2.040 M NaOH in a Styrofoam cup. If both solutions were initi
    7·1 answer
  • Tom has built a large slingshot, but it is not working quite right. He thinks he can model the slingshot like an ideal spring wi
    15·1 answer
  • Titin is a spring-shaped elastic protein that attaches to the thick filament and anchors it to the Z-discs of a sarcomere. If ti
    15·1 answer
  • 100-ft-long horizontal pipeline transporting benzene develops a leak 43 ft from the high-pressure end. The diameter of the leak
    7·1 answer
  • Two forces, F⃗ 1F→1F_1_vec and F⃗ 2F→2F_2_vec, act at a point,F⃗ 1F→1F_1_vec has a magnitude of 8.80 NN and is directed at an an
    13·1 answer
  • A stationary boat in the ocean is experiencing waves from a storm. The waves move at 59 km/h and have a wavelength of 145 m . Th
    15·1 answer
  • A parallel plate capacitor stores charge, and thus, stores energy in the form of electric potential energy. The total energy sto
    9·1 answer
  • A turntable of radius R1 is turned by a circular rubberroller of radius R2 in contact with it at their outeredges. What is the r
    7·1 answer
  • A child of mass m is at the edge of a merry-go-round of diameter d. When the merry-go-round is rotating with angular acceleratio
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!