answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
2 years ago
9

Which of the following represents a convex lens? A. +f B. -di C. -f D. +di

Physics
3 answers:
Aleonysh [2.5K]2 years ago
7 0
F is the focal length of the lens. A positive f indicates a converging optical device, like a convex lens or a concave mirror.

Choice A
Musya8 [376]2 years ago
6 0

Answer:

(A).+f

Explanation:

Convex lens :

Convex lens is thicker at the center and thinner at the edges.

The lens which is converging it is called convex lens.

The parallel light ray pass through the lens then the light rays converges on one point that point is called focal length.

The focal length of the convex lens is positive.

So, +f represents the focal length of Convex lens.

Hence, This is the required solution.

Guest2 years ago
0 0

+f
Apex no
Cap

You might be interested in
An automobile is traveling at a constant 15 m/s, then it undergoes acceleration from that moment forward. Which statement best d
creativ13 [48]

Answer:

d

Explanation:

7 0
2 years ago
A cyclist going downhill is accelerating at 1.2 m/s2. If the final velocity of the cyclist is 16 m/s after 10 seconds, what is t
Blababa [14]

Answer:

Initial Velocity is 4 m/s

Explanation:

What is acceleration?

It is the change in velocity with respect to time, or the rate of change of velocity.

We can write this as:

a=\frac{\Delta v}{t}

Where

a is the acceleration

v is velocity

t is time

\Delta  is "change in"

For this problem , we are given

a = 1.2

t = 10

Putting into formula, we get:

a=\frac{\Delta v}{t}\\1.2=\frac{\Delta v}{10}\\\Delta v = 1.2*10\\\Delta v = 12

So, the change in velocity is 12 m/s

The change in velocity can also be written as:

\Delta v = Final  \ Velocity - Initial \ Velocity

It is given Final Velocity = 16, so we put it into formula and find Initial Velocity. Shown Below:

\Delta v = Final  \ Velocity - Initial \ Velocity\\12=16-Initial \ Velocity\\Initial \ Velocity = 16 - 12 = 4

hence,

Initial Velocity is 4 m/s

3 0
3 years ago
Read 2 more answers
Mary takes 6.0 seconds to run up a flight of stairs that is 102 meters long. if mary's weight is 87 newtons, what power has mary
pentagon [3]
Thank you for posting your question here at brainly. I hope the answer will help. Below are the choices that can be found elsewhere:

 <span>A. 1.5 * 10^3 Watts 
B. 7.3 * 10^2 Watts 
C. 3.5 * 10^2 Watts 
D. 2.5 * 10^2 Watts
</span>
 <span>Work = force*displacement = 10^2*87 = 8,700 joule 
Power = work/time = 8,700/6 = 1.45*10^3 (rounded up to 1.5 kw). The answer is A. </span>
3 0
2 years ago
Read 2 more answers
A slender rod is 80.0 cm long and has mass 0.370 kg . A small 0.0200-kg sphere is welded to one end of the rod, and a small 0.05
nataly862011 [7]

Answer:

1.10 m/s

Explanation:

Linear speed is given by

v=r\omega

Kinetic energy is given by

KE=0.5I\omega^{2}

Potential energy

PE= mgh

From the law of conservation of energy, KE=PE hence

0.5I\omega^{2}=mgh where m is mass, I is moment of inertia, \omega is angular velocity, g is acceleration due to gravity and h is height

Substituting m2-m1 for m and 0.5l for h, \frac {2v}{L} for \omega we obtain

0.5I(\frac {2v}{L})^{2}=0.5Lg(m2-m1)

(\frac {2v}{L})^{2}=\frac {gl(m2-m1)}{I} and making v the subject

v^{2}=\frac {gl^{3}(m2-m1)}{4I}

v=\sqrt {\frac {gl^{3}(m2-m1)}{4I}}

For the rod, moment of inertia I=\frac {ML^{2}}{12} and for sphere I=MR^{2} hence substituting 0.5L for R then I=M(0.5L)^{2}

For the sphere on the left hand side, moment of inertia I

I=m1(0.5L)^{2} while for the sphere on right hand side, I=m2(0.5L)^{2}

The total moment of inertia is therefore given by adding

I=\frac {ML^{2}}{12}+ m1(0.5L)^{2}+ m2(0.5L)^{2}=\frac {L^{2}(M+3m1+3m2)}{12}

Substituting \frac {L^{2}(M+3m1+3m2)}{12} for I in the equation v=\sqrt {\frac {gL^{3}(m2-m1)}{4I}}

Then we obtain

v=\sqrt {\frac {gL^{3}(m2-m1)}{4(\frac {L^{2}(M+3m1+3m2)}{12})}}=\sqrt {\frac {3gL^{3}(m2-m1)}{L^{2}(M+3m1+3m2)}}

This is the expression of linear speed. Substituting values given we get

v=\sqrt {\frac {3*9.81*0.8^{3}(0.05-0.02)}{0.8^{2}(0.39+3(0.02)+3(0.05))}} \approx 1.08 m/s

8 0
2 years ago
Electric field lines always begin at _______ charges (or at infinity) and end at _______ charges (or at infinity). One could als
lesantik [10]

Answer:

b)

Explanation:

By convention, the electric field lines (which are tangent to the direction of the electric field at a given point) always begin at positive charges, and finish at negative charges.

This is a consequence of the convention that states that the electric field has the direction of the trajectory of a positive test charge when released from rest in an electric field.

(As the positive charge would move away from positive charges and would  be attracted by negative ones).

So, the combination of answers that is true is b) (positive, negative, positive).

3 0
2 years ago
Other questions:
  • a field hockey ball is launched from the ground at an angle to the horizontal. what are the ball's horizontal and vertical accel
    11·1 answer
  • In an experiment the chemical reaction between a piece of aluminum foil and Copper(II)Chloride solution in a beaker is observed.
    12·2 answers
  • A piece of candy has 5 calories (or 5000 calories). if it could be burned, leaving nothing but carbon dioxide and water, how muc
    8·2 answers
  • A cat named SchrÖdinger walks along a uniform plank that is 4.00 m long and has a mass of 7.00 kg. The plank is supported by two
    13·1 answer
  • You have been abducted by aliens and find yourself on a strange planet. Fortunately, you have a meter stick with you. You observ
    12·2 answers
  • A uniform piece of wire, 20 cm long, is bent in a right angle in the center to give it an L-shape. How far from the bend is the
    15·2 answers
  • A block weighing 400 kg rests on a horizontal surface and supports on top of it ,another block of weight 100 kg which is attache
    10·1 answer
  • Suppose the truck that’s transporting the box In Example 6.10 (p. 150) is driving at a constant speed and then brakes and slows
    15·1 answer
  • An airliner of mass 1.70×105kg1.70×105kg lands at a speed of 75.0 m/sm/s. As it travels along the runway, the combined effects o
    5·1 answer
  • Two waves are traveling in the same direction along a stretched string. The waves are 45.0° out of phase. Each wave has an ampli
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!