Answer:
f(t) = 4(t − 1)2 + 4; the minimum height of the roller coaster is 4 meters from the ground
Step-by-step explanation:
The function is a quadratic where t is time and f(t) is the height from the ground in meters. You can write the function f(t) = 4t2 − 8t + 8 in vertex form by completing the square. Complete the square by removing a GCF from 4t2 - 8t. Take the middle term and divide it in two. Add its square. Remember to subtract the square as well to maintain equality.
f(t) = 4t2 − 8t + 8
f(t) = 4(t2 - 2t) + 8 The middle term is -2t
f(t) = 4(t2 - 2t + 1) + 8 - 4 -2t/2 = -1; -1^2 = 1
f(t) = 4(t-1)^2 + 4 Add 1 and subtract 4 since 4*1 = 4.
The vertex (1,4) means at a minimum the roller coaster is 4 meters from the ground.
- f(t) = 4(t − 1)2 + 2; the minimum height of the roller coaster is 2 meters from the ground
- f(t) = 4(t − 1)2 + 2; the minimum height of the roller coaster is 4 meters from the ground
- f(t) = 4(t − 1)2 + 4; the minimum height of the roller coaster is 1 meter from the ground
- f(t) = 4(t − 1)2 + 4; the minimum height of the roller coaster is 4 meters from the ground
A score of 85 would be 1 standard deviation from the mean, 74. Using the 68-95-99.7 rule, we know that 68% of normally distributed data falls within 1 standard deviation of the mean. This means that 100%-68% = 32% of the data is either higher or lower. 32/2 = 16% of the data will be higher than 1 standard deviation from the mean and 16% of the data will be lower than 1 standard deviation from the mean. This means that 16% of the graduating seniors should have a score above 85%.
Answer:
Step-by-step explanation:
Let's assume this is a function
<u>The points are</u>
<u>Since it is linear relation, we'll get the slope intercept form</u>
- g = ms + b, where g- number of gallons, s- time in seconds, b- y intercept
<u>Using the points, let's calculate the formula</u>
- m = (10 - 13)/(60 - 40) = -3/20
- 10 = -3/20*60 + b
- 10 = - 9 + b
- b = 19
<u>So the formula is:</u>
2X+8=x-6
2x-x=-6-8
X=-6-8
X=-14
Well, 9 billion = 9,000,000,000 so in scientific form it would be 9 x 10^9 To get the exponent, just count the number of zeros, which for 9 billion we have 9