Answer:
1.25377 m/s²
Explanation:
m = Mass of person
g = Acceleration due to gravity = 9.81 m/s²
= Coefficient of friction
= Slope
From Newton's second law

Applying
to the above equation and 

The acceleration of the same skier when she is moving down a hill is 1.25377 m/s²
As per the question, the point charge is given as [q] = 6.8 C
The velocity of the charged particle [v] = 
The magnetic field [B] = 1.4 T
The angle made between magnetic field and velocity
= 15 degree.
We are asked to calculate the magnetic force experienced by the charged particle.
The magnetic force experienced by the charged particle is calculated as -
Magnetic force 
i.e F = 





Hence, the force experienced by the charged particle is C i.e 
Answer:
Intensity of beam 18 feet below the surface is about 0.02%
Explanation:
Using Lambert's law
Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium
then dI / I = kdt
taking log,
ln(I) = kt + ln C
I = Ce^kt
t=0=>I=I(0)=>C=I(0)
I = I(0)e^kt
t=3 & I=0.25I(0)=>0.25=e^3k
k = ln(0.25)/3
k = -1.386/3
k = -0.4621
I = I(0)e^(-0.4621t)
I(18) = I(0)e^(-0.4621*18)
I(18) = 0.00024413I(0)
Intensity of beam 18 feet below the surface is about 0.2%