3.46 g Cu 1 mol Cu 6.02*10^23 atoms Cu =
63.55 g Cu 1 mol Cu
3.28*10^22 atoms Cu
Answer:
CN^- is a strong field ligand
Explanation:
The complex, hexacyanoferrate II is an Fe^2+ specie. Fe^2+ is a d^6 specie. It may exist as high spin (paramagnetic) or low spin (diamagnetic) depending on the ligand. The energy of the d-orbitals become nondegenerate upon approach of a ligand. The extent of separation of the two orbitals and the energy between them is defined as the magnitude of crystal field splitting (∆o).
Ligands that cause a large crystal field splitting such as CN^- are called strong field ligands. They lead to the formation of diamagnetic species. Strong field ligands occur towards the end of the spectrochemical series of ligands.
Hence the complex, Fe(CN)6 4− is diamagnetic because the cyanide ion is a strong field ligand that causes the six d-electrons present to pair up in a low spin arrangement.
<span>In order to do this, you have change the alkene into an
alkyne. That is the aim of Br2/CH2Cl2 trailed by NaNH2. The Br2 with form a vic
dihalide (3,4-dibromo octane). Adding of NaNH2 will execute two E2 reactions.
-NH2 will eliminate an H from carbons 3 and 4. This double elimination will make
the alkyne. Then handling the alkyne with H2/Lindlar will form the cis alkene. The
final product will be CIS-3-octene.</span>
Flame colors are produced from the movement of the electrons in the metal ions present in the compounds. When you heat it, the electrons gain energy and can jump into any of the empty orbitals at higher levels Each of these jumps involves a specific amount of energy being released as light energy, and each corresponds to a particular color. As a result of all these jumps, a spectrum of colored lines will be produced. The color you see will be a combination of all these individual colors.
Answer:remove 4 electrons
Explanation:
I took the test just a minute a go