Answer:
They two waves has the same amplitude and frequency but different wavelengths.
Explanation: comparing the wave equation above with the general wave equation
y(x,t) = Asin(2Πft + 2Πx/¶)
Let ¶ be the wavelength
A is the amplitude
f is the frequency
t is the time
They two waves has the same amplitude and frequency but different wavelengths.
Answer:
The elastic potential energy is zero.
The net force acting on the spring is zero.
Explanation:
The equilibrium position of a spring is the position that the spring has when its neither compressed nor stretched - it is also called natural length of the spring.
Let's now analyze the different statements:
The spring constant is zero. --> false. The spring constant is never zero.
The elastic potential energy is at a maximum --> false. The elastic potential energy of a spring is given by

where k is the spring constant and x the displacement. Therefore, the elastic potential energy is maximum when x, the displacement, is maximum.
The elastic potential energy is zero. --> true. As we saw from the equation above, the elastic potential energy is zero when the displacement is zero (at the equilibrium position).
The displacement of the spring is at a maxi
num --> false, for what we said above
The net force acting on the spring is zero. --> true, as the spring is neither compressed nor stretched
Answer:
Picasso’s artistic achievements were in large part the result of his contribution to help bring the Nazi' devastating casual bombing and Spanish civil war in Guernica to the world's attention through his paintings.
78.4 F because you do 8.00 muliplyed by 9.8