During the fall, the potential energy stored in the ball is converted into kinetic energy.
Thus,
PE = KE before hitting the ground
= 1/2 • mv^2
= 1/2 • 1 • 12^2
= 72J
Answer:

Explanation:
Newton's law of universal gravitation states that the force experimented by a satellite of mass m orbiting Mars, which has mass
at a distance r will be:

where
is the gravitational constant.
This force is the centripetal force the satellite experiments, so we can write:

Putting all together:

which means:
![r=\sqrt[3]{\frac{GM}{4\pi^2}T^2}](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGM%7D%7B4%5Cpi%5E2%7DT%5E2%7D)
Which for our values is:
![r=\sqrt[3]{\frac{(6.67\times10^{-11}Nm^2/kg^2)(6.39\times10^{23} kg)}{4\pi^2}(1.026\times24\times60\times60s)^2}=20395282m=20395.3km](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%286.67%5Ctimes10%5E%7B-11%7DNm%5E2%2Fkg%5E2%29%286.39%5Ctimes10%5E%7B23%7D%20kg%29%7D%7B4%5Cpi%5E2%7D%281.026%5Ctimes24%5Ctimes60%5Ctimes60s%29%5E2%7D%3D20395282m%3D20395.3km)
Since this distance is measured from the center of Mars, to have the height above the Martian surface we need to substract the radius of Mars R=3389.5 km
, which leaves us with:

Answer:
please read the answer below
Explanation:
The angular momentum is given by

By taking into account the angles between the vectors r and v in each case we obtain:
a)
v=(2,0)
r=(0,1)
angle = 90°

b)
r=(0,-1)
angle = 90°

c)
r=(1,0)
angle = 0°
r and v are parallel
L = 0kgm/s
d)
r=(-1,0)
angle = 180°
r and v are parallel
L = 0kgm/s
e)
r=(1,1)
angle = 45°

f)
r=(-1,1)
angle = 45°
the same as e):
L = 5kgm/s
g)
r=(-1,-1)
angle = 135°

h)
r=(1,-1)
angle = 135°
the same as g):
L = 5kgm/s
hope this helps!!
Answer:
Magnitude of the force is 2.135N and the direction is 41.8° below negative y-axis
Explanation:
The stiff wire 50.0cm long bent at a right angle in the middle
One section lies along the z axis and the other is along the line y=2x in the xy plane

tan θ = 2
Therefore,
slope m = tan θ = y / x

Then length of each section is 25.0cm
so, length vector of the wire is

And magnetic field is B = (0.318T)i
Therefore,

![\bar F = (20.0)[(0.112m)i +(0.224m)j-(0.250m)k \times 90.318T)i]](https://tex.z-dn.net/?f=%5Cbar%20F%20%3D%20%2820.0%29%5B%280.112m%29i%20%2B%280.224m%29j-%280.250m%29k%20%5Ctimes%2090.318T%29i%5D)
![= (20.0)(i(0)+j(-0.250)(0.318T)+k[0-(0.224m)(0.318T)]\\\\=(20.0)(-0.250)(0.318)j-(20.0)(0.224)(0.318T)\\\\=-(1.59N)j-(1.425N)k](https://tex.z-dn.net/?f=%3D%20%2820.0%29%28i%280%29%2Bj%28-0.250%29%280.318T%29%2Bk%5B0-%280.224m%29%280.318T%29%5D%5C%5C%5C%5C%3D%2820.0%29%28-0.250%29%280.318%29j-%2820.0%29%280.224%29%280.318T%29%5C%5C%5C%5C%3D-%281.59N%29j-%281.425N%29k)
Magnitude of the force is

Direction is

Magnitude of the force is 2.135N and the direction is 41.8° below negative y-axis
A pump jack scaffold must be fitted with two positive gripping mechanisms to prevent slippage. Pump jacks are a uniquely designed scaffold consisting of a platform supported by movable brackets on vertical poles. The brackets are designed to be raised and lowered in a manner similar to an automobile jack. It is important to make sure that pump jack brackets have two positive gripping mechanisms to prevent any failure or slippage.