answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovangra [49]
2 years ago
5

Very large accelerations can injure the body, especially if they last for a considerable length of time. The severity index (SI)

, a measure of the likelihood of injury, is defined as SI = a5/2t, where a is the acceleration in multiples of g and t is the time the acceleration lasts (in seconds). In one set of studies of rear end collisions, a person's velocity increases by 12 km/h with an acceleration of 35 m/s2.(a) What is the severity index for the collision? (s)(b) How far does the person travel during the collision if the car was initially moving forward at 7.0 km/h? (m)
Physics
1 answer:
Ludmilka [50]2 years ago
8 0

Answer:

a) The severity index (SI) is 3047.749, b) The injured travels 0.345 meters during the collision.

Explanation:

a) The g-multiple of the acceleration, that is, a ratio of the person's acceleration to gravitational acceleration, is:

a' = \frac{35\,\frac{m}{s^{2}} }{9.807\,\frac{m}{s^{2}} }

a' = 3.569

The time taken for the injured to accelerate to final speed is given by this formula under the assumption of constant acceleration:

v_{f} = v_{o} + a \cdot t

Where:

v_{o} - Initial speed, measured in meters per second.

v_{f} - Final speed, measured in meter per second.

a - Acceleration, measured in \frac{m}{s^{2}}.

t - Time, measured in seconds.

t = \frac{v_{f}-v_{o}}{a}

t = \frac{\left(12\,\frac{km}{h} \right)\cdot \left(1000\,\frac{m}{km} \right)\cdot \left(\frac{1}{3600}\,\frac{h}{s}  \right)}{35\,\frac{m}{s^{2}} }

t = 0.095\,s

Lastly, the severity index is now determined:

SI = \frac{a'^{5}}{2\cdot t}

SI = \frac{3.569^{5}}{2\cdot (0.095\,s)}

SI = 3047.749

b) The initial and final speed of the injured are 1.944\,\frac{m}{s} and 5.278\,\frac{m}{s}, respectively. The travelled distance can be determined from this equation of motion:

v_{f}^{2} = v_{o}^{2} + 2\cdot a \cdot \Delta s

Where \Delta s is the travelled distance, measured in meters.

\Delta s = \frac{v_{f}^{2}-v_{o}^{2}}{2\cdot a}

\Delta s = \frac{\left(5.278\,\frac{m}{s} \right)^{2}-\left(1.944\,\frac{m}{s} \right)^{2}}{2\cdot \left(35\,\frac{m}{s^{2}} \right)}

\Delta s = 0.345\,m.

You might be interested in
The rotational kinetic energy term is often called the kinetic energy in the center of mass, while the translational kinetic ene
weqwewe [10]

Answer:

C

Explanation:

The total kinetic energy is the sum of the kinetic energy in the center of mass (Rotational Kinetic energy) plus the kinetic energy of the center of mass( Translational Kinetic Energy).

The formula

K_{tot} = K_{t} +K_{r}  is applicable only when

The moment of inertia must be taken about an axis through the center of mass.

6 0
2 years ago
Read 2 more answers
An oscilloscope shows a steady sinusoidal signal of 5 Volt peak to peak, which spans 5 cm in vertical direction on the screen. B
Troyanec [42]

Answer:

it will show a continuous rise in value. The rise will be sinusoidal.

Explanation:

3 0
2 years ago
The two hot-air balloons in the drawing are 48.2m and 61.0 m above the ground.A person in the left balloon observes that the rig
mafiozo [28]

Answer:

The horizontal distance x between the two balloons is 54.15 m

Explanation:

The diagram described as obtained online is presented in the image attached to this solution.

Let the horizontal distance between the two balloons be x

Difference in height (vertical distance) between the two balloons = 61 - 48.2 = 12.8 m

Using trigonometric relations, it is evident that

Tan 13.3° = 12.8/x

x = 12.8/tan 13.3° = 12.8/0.2364 = 54.15 m

4 0
2 years ago
A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
Studentka2010 [4]

(a) 18.9 m/s

The motion of the stone consists of two independent motions:

- A horizontal motion at constant speed

- A vertical motion with constant acceleration (g=9.8 m/s^2) downward

We can calculate the components of the initial velocity of the stone as it is launched from the ground:

u_x = v_0 cos \theta = (25.0)(cos 41.0^{\circ})=18.9 m/s\\u_y = v_0 sin \theta = (25.0)(sin 41.0^{\circ})=16.4 m/s

The horizontal velocity remains constant, while the vertical velocity changes due to the acceleration along the vertical direction.

When the stone reaches the top of its parabolic path, the vertical velocity has became zero (because it is changing direction): so the speed of the stone is simply equal to the horizontal velocity, therefore

v=18.9 m/s

(b) 22.2 m/s

We can solve this part by analyzing the vertical motion only first. In fact, the vertical velocity at any height h during the motion is given by

v_y^2 - u_y^2 = 2ah (1)

where

u_y = 16.4 m/s is the initial vertical velocity

v_y is the vertical velocity at height h

a=g=-9.8 m/s^2 is the acceleration due to gravity (negative because it is downward)

At the top of the parabolic path, v_y = 0, so we can use the equation to find the maximum height

h_{max} = \frac{-u_y^2}{2a}=\frac{-(16.4)^2}{2(-9.8)}=13.7 m

So, at half of the maximum height,

h = \frac{13.7}{2}=6.9 m

And so we can use again eq(1) to find the vertical velocity at h = 6.9 m:

v_y = \sqrt{u_y^2 + 2ah}=\sqrt{(16.4)^2+2(-9.8)(6.9)}=11.6 m/s

And so, the speed of the stone at half of the maximum height is

v=\sqrt{v_x^2+v_y^2}=\sqrt{18.9^2+11.6^2}=22.2 m/s

(c) 17.4% faster

We said that the speed at the top of the trajectory (part a) is

v_1 = 18.9 m/s

while the speed at half of the maximum height (part b) is

v_2 = 22.2 m/s

So the difference is

\Delta v = v_2 - v_2 = 22.2 - 18.9 = 3.3 m/s

And so, in percentage,

\frac{\Delta v}{v_1} \cdot 100 = \frac{3.3}{18.9}\cdot 100=17.4\%

So, the stone in part (b) is moving 17.4% faster than in part (a).

4 0
2 years ago
A 0.500 kg aluminum pan on a stove is used to heat 0.250 liters of water from 20.0ºC to 80.0ºC. (a) How much heatis required? Wh
Jet001 [13]

Answer:

heat used to rise temperature pan =  30.1%

heat used to rise temperature water =  69.9%

Explanation:

Given data

mass of water = 0.250 liter = 0.250 kg

aluminum pan mass = 0.500 kg

initial temperature = 20.0ºC

final temperature =  80.0ºC

to find out

heat used to rise temperature of  pan and water

solution

we find here heat transferred to the water that is

heat transferred to the water = mass of water × specific heat of water × change in temperature    ...........1

specific heat of water is 4186 J/kgºC

so

heat transferred to the water = 0.250 × 4186 × (80-20) kJ

heat transferred to the water = 62.8 kJ

and

heat transferred to the aluminum that is

heat transferred to the aluminum = mass of aluminum × specific heat of aluminum × change in temperature    ...........2

here specific heat of aluminum is 900 J/kgºC

heat transferred to the aluminum = 0.500 × 900 × (80-20) kJ

heat transferred to the aluminum = 27 kJ

so

total heat = 62.8 + 27 = 89.8 kJ

so

heat used to rise temperature pan = 27/89.8 ×100% = 30.1%

heat used to rise temperature water = 62.8 / 89.8 ×100% = 69.9%

8 0
2 years ago
Other questions:
  • A boy is pushing a chair by applying a force of 5 newtons. His mother helps him push it faster by applying an additional force o
    13·2 answers
  • A 0.5-kg ball accelerated at 50 m/s2<br> .<br><br> What force was applied?
    7·1 answer
  • Find an expression for the acceleration a of the red block after it is released. use mr for the mass of the red block, mg for th
    6·2 answers
  • A parcel is traveling on a horizontal conveyer belt moving at 1 meter/second. At the end of the conveyor belt, the parcel lands
    9·1 answer
  • The suspension cable of a 1,000 kg elevator snaps, sending the elevator moving downward through its shaft. The emergency brakes
    14·1 answer
  • Consider the flow of a fluid with viscosity  through a circular pipe. The velocity profile in the pipe is given as u(r) = umax(
    8·1 answer
  • A spaceship is travelling at 20,000.0 m/s. After 5.0 seconds, the rocket thrusters are turned on. At the 55.0 second mark, the s
    9·1 answer
  • A passenger railroad car has a total of 8 wheels. Springs on each wheel compress--slightly--when the car is loaded. Ratings for
    12·1 answer
  • Tendons are strong elastic fibers that attach muscles to bones. To a reasonable approximation, they obey Hooke's law. In laborat
    14·1 answer
  • a water heater has a power rating of 1 kW. how many seconds will this heater take to boil 1 liter of water?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!