The magnitude of the electrostatic force acting on a charge q is the product between the charge and the intensity of the electric field E. The magnitude of the electron charge is

(we are not interested in the sign), so the electrostatic force magnitude is
Answer:
<em>You would use the kinematic formula:</em>

Explanation:
The upwards vertical motion is ruled by the equation:

Where:





Naming Δy = y - y₀, the equation becomes:

Then, you just need to substitute with Δy = 0.1m, t = 2s, and g = 9.8m/s², ans solve for the intital vertical velocity.
Answer:
Both of the stunt professionals will sustain injuries of the same seriousness
Explanation:
We are being told that both stunt professionals are standing from the same height, therefore they will attain the same equivalent speed at the bottom if we are to look at it from the principle of conservation of energy.
Now; According to principle of momentum; the momentum at which the first stunt professional A hits the ground be equal as the momentum with which stunt professional B will hit the wall.
Thus; both of the stunt professionals will sustain injuries of the same seriousness
kinetic energy is given as
KE = (0.5) m v²
given that : v = speed of the bottle in each case = 4 m/s
when m = 0.125 kg
KE = (0.5) m v² = (0.5) (0.125) (4)² = 1 J
when m = 0.250 kg
KE = (0.5) m v² = (0.5) (0.250) (4)² = 2 J
when m = 0.375 kg
KE = (0.5) m v² = (0.5) (0.375) (4)² = 3 J
when m = 0.0.500 kg
KE = (0.5) m v² = (0.5) (0.500) (4)² = 4 J
The formula for kinetic energy is

. Thus, the equation for velocity is

.