solution:
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
find the probability that (p∧ ≤ 0.06) , substitute the values of sample units (n) , and the probability of nonconformities (p) in the probability mass function of binomial distribution.
Consider x to be the number of non-conformities. It follows a binomial distribution with n being 50 and p being 0.03. That is,
binomial (50,0.02)
Also, the estimate of the true probability is,
p∧ = x/50
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
The calculation is obtained as
P(p^ ≤ 0.06) = p(x/20 ≤ 0.06)
= 50cx ₓ (0.03)x ₓ (1-0.03)50-x
= (50c0 ₓ (0.03)0 ₓ (1-0.03)50-0 + 50c1(0.03)1 ₓ (1-0.03)50-1 + 50c2 ₓ (0.03)2 ₓ (1-0.03)50-2 +50c3 ₓ (0.03)3 ₓ (1- 0.03)50-3 )
=( ₓ (0.03)0 ₓ (1-0.03)50-0 + ₓ (0.03)1 ₓ (1-0.03)50-1 + ₓ (0.03)2 ₓ (1-0.03)50-2 ₓ (0.03)3 ₓ (1-0.03)50-3 )
Answer:
Option A
Step-by-step explanation:
Since at. 0.05 level of significance, the p value was great than 0.05 but less than 0.1, we will fail to reject the null and conclude that the sample data does not provide enough evidence that the average life of the batteries is greater than 75 weeks.
Answer:
<h2>p(B) =
8310</h2>
Step-by-step explanation:
We will use the addition rule of probability of two events to solve the question. According to the rule given two events A and B;
p(A∪B) = p(A)+p(B) - p(A∩B) where;
A∪B is the union of the two sets A and B
A∩B is the intersection between two sets A and B
Given parameters
P(A)=15
P(A∪B)=1225
P(A∩B)=7100
Required
Probability of event B i.e P(B)
Using the expression above to calculate p(B), we will have;
p(A∪B) = p(A)+p(B) - p(A∩B)
1225 = 15+p(B)-7100
p(B) = 1225-15+7100
p(B) = 8310
Hence the missing probability p(B) is 8310.