Cl2=3.17g/L
Ne=.901g/L
CO2=1.96g/l
therefore Cl2 is the densest gas under the given conditions.
Answer:
Sigma bonds: 10
Pi bonds: 4
Explanation:
The compound described must be CH2=CH-CO-CH≡CH. If we look at the compound closely, we will notice that there are 10 sigma bonds and 4 pi bonds.
There are three pi bonds between carbon atoms and one pi bond between a carbon and an oxygen atom (C=O). All these can easily be seen in the structure of the formula chosen in this answer.
Answer:
The tools/instruments, the type of seed, the soil or planting products, the amount of germination time/days, and where the seedling is placed.
Explanation:
If anything but the temperature is changed, it can result in false results. For instance, if Tamera uses red corn for one but yellow corn for the other, it can change the germination rate. So can the type of soil, water or the amount of time each plant has to grow. If she changes thermometers or any other tool she uses, it may give her a different result than the ones she used before. And finally, if she moves the warm plant from the windowsill to her bedroom, it can mess with the results she gets from the heated sample.
Solutions are made up of two non reacting species called solute and solvent. The amount of solute in solvent is known as concentration of that solute. Concentration is often measured in Molarity. Molarity is the amount of solute dissolved in 1 dm3 of solution. Answer to your question is as follow;
Formula of hydrated sodium carbonate : Na₂CO₃.10H₂O, so moles of water in one mole of hydrated salt = 10
<h3>Further explanation</h3>
Hydrate is a compound that binds water (H₂O), usually in the form of crystals/ solids
If these compounds are dissolved in water or heated, the hydrates can decompose:
Example: X.YH₂O (s) → X (aq) + YH₂O (l)
The formula for the hydrated compound contains: YH2O
The mole ratio shows the ratio of the coefficients of the hydrate compound
10.45 hydrated sodium carbonate(Na₂CO₃.xH₂O) were heated until 3.87 of 3.87of anhydrous (Na₂CO₃) remained, so
mass H₂O released :

mass Na₂CO₃ = 3.87 g
mol ratio Na₂CO₃(MW= g/mol) : H₂O(MW=18 g/mol) =
