1 atm = 760mmHg
754.3 mmHg / 760 mmHg * 1atm = 0.99 atm
760 mmHg = 101.3 KPa
754.3 mmHg/ 760mmHg *101.3 KPa = 100.54 KPa
Hope this helps!
Answer:
The answer is: 51.8 g (86% of serving size)
Explanation:
In order to solve the problem, we have to first determine the number of moles there are in 11.0 g of sucrose. Sucrose has a molecular weight of 342 g (we calculate this from the molar mass of the elements : 12 x 12 g/mol C + 22 x 1 g/mol H + 11 x 16 g/mol O). So, we divide the mass (11.0 g) into the molecular weight of sucrose:
11.0 g sucrose x 1 mol/342 g sucrose= 0.032 mol
We have 0.032 mol of sucrose in a serving of 60 g. But we need less moles (0.0278 mol):
0.032 mol ------------ 60 g serving
0.0278 mol------------ x= 0.0278 mol x 60 g serving/0.032 mol
x= 51.8 g
So, lesser than 1 serving of 60 g must be eaten to consume 0.0278 mol os sucrose. Exactly, 51.8 g (which stands for a 86% of the serving size).
Answer:
The answer is: Law of multiple proportions
Explanation:
The law of multiple proportions is a law of chemical combination given by Dalton in 1803.
According to this law, if more than one chemical compound is formed by combining two elements, then the mass of an element that combines with the fixed mass of other element is represented in the form of small whole number ratio.
<u>Therefore, is an illustration of the law of the law of multiple proportions.</u>
Answer:
28.52 L
Explanation:
First, let's calculate the density of the ocean, which is the mass divided by the volume:
d = m/V
d = 35.06/1
d = 35.06 g/L
So, for a mass of 1.00 kg = 1000.00 g
d = m/V
35.06 = 1000.00/V
V = 1000.00/35.06
V = 28.52 L
How all the data are expressed with two significant figures, the volume must also be expressed with two.
Answer:
c) 22
Explanation:
Let's consider the following balanced equation.
N₂(g) + 3 H₂(g) ----> 2 NH₃(l)
According to the balanced equation, 34.0 g of NH₃ are produced by 1 mol of N₂. For 170 g of NH₃:

According to the balanced equation, 34.0 g of NH₃ are produced by 3 moles of H₂. For 170 g of NH₃:

The total gaseous moles before the reaction were 5.00 mol + 15.0 mol = 20.0 mol.
We can calculate the pressure (P) using the ideal gas equation.
P.V = n.R.T
where
V is the volume (50.0 L)
n is the number of moles (20.0 mol)
R is the ideal gas constant (0.08206atm.L/mol.K)
T is the absolute temperature (400.0 + 273.15 = 673.2K)
