answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vfiekz [6]
2 years ago
3

Find the terminal velocity (in m/s) of a spherical bacterium (diameter 1.81 µm) falling in water. You will first need to note th

at the drag force is equal to the weight at terminal velocity. Take the density of the bacterium to be 1.10 ✕ 103 kg/m3. (Assume the viscosity of water is 1.002 ✕ 10−3 kg/(m · s).)
Physics
1 answer:
galina1969 [7]2 years ago
3 0

Answer:

The terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.

Explanation:

The terminal velocity of the bacterium can be calculated using the following equation:

F = 6\pi*\eta*rv    (1)

<u>Where</u>:

F: is drag force equal to the weight

η: is the viscosity = 1.002x10⁻³ kg/(m*s)

r: is the radium of the bacterium = d/2 = 1.81 μm/2 = 0.905 μm

v: is the terminal velocity

Since that F = mg and by solving equation (1) for v we have:

v = \frac{mg}{6\pi*\eta*r}  

We can find the mass as follows:

\rho = \frac{m}{V} \rightarrow m = \rho*V

<u>Where</u>:

ρ: is the density of the bacterium = 1.10x10³ kg/m³

V: is the volume of the spherical bacterium

m = \rho*V = \rho*\frac{4}{3}\pi*r^{3} = 1.10 \cdot 10^{3} kg/m^{3}*\frac{4}{3}\pi*(0.905 \cdot 10^{-6} m)^{3} = 3.42 \cdot 10^{-15} kg

Now, the terminal velocity of the bacterium is:

v = \frac{mg}{6\pi*\eta*r} = \frac{3.42 \cdot 10^{-15} kg*9.81 m/s^{2}}{6\pi*1.002 \cdot 10^{-3} kg/(m*s)*0.905 \cdot 10^{-6} m} = 1.96 \cdot 10^{-6} m/s

Therefore, the terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.

I hope it helps you!

You might be interested in
What is the freezing point of radiator fluid that is 50% antifreeze by mass? k f for water is 1.86 ∘ c/m?
densk [106]
Ethylene glycol is termed as the primary ingredients in antifreeze.
The ethylene glycol molecular formula is C₂H₆O₂.
Molar mass of C₂H₆O₂ is = (2×12) +(6×1) + (216) = 62g/mol
Now that antifreeze by mass is 50%, then there is 1kg of ethylene glycol which is present in 1kg of water.
ΔTf = Kf×m
ΔTf = depression in the freezing point.
= freezing point of water freezing point of the solution
= O°c - Tf
= -Tf
Kf = depression in freezing constant of water = 1.86°C/m
M is the molarity of the solution.
=(mass/molar mass) mass of solvent in kg
=1000g/62 (g/mol) /1kg
=16.13m
If we plug the value we get 
-Tf = 1.86 × 16.13 = 30
Tf = -30°c
7 0
2 years ago
Read 2 more answers
Hydrogen (H-1), deuterium (H-2), and tritium (H-3) are the three isotopes of hydrogen. What are the values of a, b, and c in the
asambeis [7]

I believe it is a=1 b=2 c=3

plato students

6 0
2 years ago
Read 2 more answers
What’s 2.3 miles into kilometers
True [87]
3.701 kilometers hope that helps
8 0
2 years ago
A system delivers 1275 j of heat while the surroundings perform 855 j of work on it. calculate ∆esys in j.
kakasveta [241]
The first law of thermodynamics says that the variation of internal energy of a system is given by:
\Delta U = Q + W
where Q is the heat delivered by the system, while W is the work done on the system.

We must be careful with the signs here. The sign convention generally used is:
Q positive = Q absorbed by the system
Q negative = Q delivered by the system
W positive = W done on the system
W negative = W done by the system

So, in our problem, the heat is negative because it is releaed by the system: 
Q=-1275 J
while the work is positive because it is performed by the surrounding on the system:
W=+855 J

So, the variation of internal energy of the system is
\Delta U = -1275 J+855 J=-420 J
6 0
2 years ago
Determine the number of unpaired electrons in the octahedral coordination complex [fex6]3–, where x = any halide.
juin [17]
There will be four unpaired electrons
The metal complex is [FeX₆]³⁻
X being the halogen ligand 
X = F, CL, Br, and I
The oxidation of metal state is +3
The ground state configuration is
₂₆Fe =Is² 2s²2p⁶ 3s² 3p⁶ 3d⁶ 4s²
Metal, Fe(III) ion electron configures
₂₆Fe³⁺ = Is2 2s² 2p⁶ 3s² 3p⁶ 3d⁵
3 0
2 years ago
Other questions:
  • Janelle wants to buy some strings of decorative lights for her home. She is trying to decide between two strings of lights that
    11·2 answers
  • A 2-ft-thick block constructed of wood (sg = 0.6) is submerged in oil (sg = 0.8), and has a 2-ft-thick aluminum (specific weight
    13·1 answer
  • At a given point on a horizontal streamline in flowing air, the static pressure is â2.0 psi (i.e., a vacuum) and the velocity is
    8·1 answer
  • A carnot cycle engine operates between a low temperature reservoir at 20°c and a high temperature reservoir at 800°c. if the eng
    15·1 answer
  • When an ice pack is applied to an injury, thermal energy from the injured area transfers to the ice, causing the blood vessels w
    8·2 answers
  • A solid conducting sphere with radius 0.75 m carries a net charge of 0.13 nC. What is the magnitude of the electric field at a p
    7·2 answers
  • Determine the values of mm and nn when the following average distance from the Sun to the Earth is written in scientific notatio
    5·1 answer
  • City A lies directly west of city B. When there is no wind, an airliner makes the round trip flight of distance s between them i
    6·1 answer
  • If John mows 11.5 meters of lawn from east
    12·1 answer
  • The equation used to predict the theoretical period Ty of a simple pendulum assumes a small amplitude of oscillation. A student
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!