Ethylene glycol is termed as the primary ingredients in antifreeze.
The ethylene glycol molecular formula is C₂H₆O₂.
Molar mass of C₂H₆O₂ is = (2×12) +(6×1) + (216) = 62g/mol
Now that antifreeze by mass is 50%, then there is 1kg of ethylene glycol which is present in 1kg of water.
ΔTf = Kf×m
ΔTf = depression in the freezing point.
= freezing point of water freezing point of the solution
= O°c - Tf
= -Tf
Kf = depression in freezing constant of water = 1.86°C/m
M is the molarity of the solution.
=(mass/molar mass) mass of solvent in kg
=1000g/62 (g/mol) /1kg
=16.13m
If we plug the value we get
-Tf = 1.86 × 16.13 = 30
Tf = -30°c
3.701 kilometers hope that helps
The first law of thermodynamics says that the variation of internal energy of a system is given by:

where Q is the heat delivered by the system, while W is the work done on the system.
We must be careful with the signs here. The sign convention generally used is:
Q positive = Q absorbed by the system
Q negative = Q delivered by the system
W positive = W done on the system
W negative = W done by the system
So, in our problem, the heat is negative because it is releaed by the system:
Q=-1275 J
while the work is positive because it is performed by the surrounding on the system:
W=+855 J
So, the variation of internal energy of the system is
There will be four unpaired electrons
The metal complex is [FeX₆]³⁻
X being the halogen ligand
X = F, CL, Br, and I
The oxidation of metal state is +3
The ground state configuration is
₂₆Fe =Is² 2s²2p⁶ 3s² 3p⁶ 3d⁶ 4s²
Metal, Fe(III) ion electron configures
₂₆Fe³⁺ = Is2 2s² 2p⁶ 3s² 3p⁶ 3d⁵