...the potential energy that you build while going up the hill on the roller coaster could be let go as kinetic energy -- the energy of motion that takes you down the hill of the roller coaster.
Answer:
a) t = 1.8 x 10² s
b) t = 54 s
c) t = 49 s
Explanation:
a) The equation for the position of an object moving in a straight line at constan speed is:
x = x0 + v * t
where
x = position at time t
x0 = initial position
v = velocity
t = time
In this case, the origin of our reference system is at the begining of the sidewalk.
a) To calculate the time the passenger travels on the sidewalk without wlaking, we can use the equation for the position, using as speed the speed of the sidewalk:
x = x0 + v * t
95 m = 0m + 0. 53 m/s * t
t = 95 m/ 0.53 m/s
t = 1.8 x 10² s
b) Now, the speed of the passenger will be her walking speed plus the speed of th sidewalk (0.53 m/s + 1.24 m/s = 1.77 m/s)
t = 95 m/ 1.77 m/s = 54 s
c) In this case, the passenger is located 95 m from the begining of the sidewalk, then, x0 = 95 m and the final position will be x = 0. She walks in an opposite direction to the movement of the sidewalk, towards the origin of the system of reference ( the begining of the sidewalk). Then, her speed will be negative ( v = 0.53 m/s - 2*(1.24 m/s) = -1.95 m/s. Then:
0 m = 95 m -1.95 m/s * t
t = -95 m / -1.95 m/s = 49 s
The hoop is attached.
Consider that the friction force is given by:
F = μ·N
= μ·m·g·cosθ
We also know, considering the forces of the whole system, that:
F = -m·a + m·g·sinθ
and
a = (1/2)·<span>g·sinθ
Therefore:
</span>-(1/2)·m·g·sinθ + m·g·sinθ = <span>μ·m·g·cosθ
</span>(1/2)·m·g·sinθ = <span>μ·m·g·cosθ
</span>μ = (1/2)·m·g·sinθ / <span>m·g·cosθ
= </span>(1/2)·tanθ
Now, solve for θ:
θ = tan⁻¹(2·μ)
= tan⁻¹(2·0.9)
= 61°
Therefore, the maximum angle <span>you could ride down without worrying about skidding is
61°.</span>
We need a and we have m and F . Now a = f÷m so therefore a = 4,9 ÷ 0,5 which is 0,98 metres per cubic second
Answer:
C
Explanation:
If the arrows represent light rays, then Rachel sees a candle flame when the light released by the flame is received by her eyes.