Answer:
Temperature affects Seismic Wave speed.
Explanation:
Both temperature and pressure affect the speed of Seismic waves. The Speed of Seismic waves increases uniformly as pressure increases, meaning that as depth increases, pressure also increases which causes Seismic Wave speeds to increase as well. This can be calculated and the data can be gathered. Temperature on the other hand decreases the speed of Seismic Waves, therefore we can calculate the difference of speed between what the Seismic Wave should be at a certain pressure with the actual speed gathered. This difference in speed will allow us to determine the actual temperature at that level.
Answer:
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Explanation:
Chemical equation:
HNO₃ + NaOH → NaNO₃ + H₂O
Balanced chemical equation:
HNO₃(aq) + NaOH(aq) → NaNO₃(aq) + H₂O(l)
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Net ionic equation:
H⁺(aq) + OH⁻(aq) → H₂O(l)
The NO₃⁻ (aq) and Na⁺ (aq) are spectator ions that's why these are not written in net ionic equation. The water can not be splitted into ions because it is present in liquid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation
<h2>The isotopes of an element all have the same __(atomic, mass) __number, but they have different __(atomic,mass)__numbers.</h2>
Explanation:
The isotopes of an element all have the same __atomic number __, but they have different __mass __numbers.
The isotopes have same atomic number that is :
- Same number of electrons
- Same number of protons
- same electronic configuration
- same valence electrons
- same valency
- same symbol
The isotopes have different mass number that is :
They differ in number of neutrons .
For example : Isotopes of hydrogen are : H₁¹ , H₁² , H₁³
isotopes of Oxygen is : O¹⁶ , O¹⁷, O¹⁸
<span>In 3.3 moles of potassium sulphide (K2S), there are 363.99 g. Let's first calculate the molar mass of K2S (Mr) which is the sum of atomic masses (Ar) of its elements. According to the periodic table, Ar(K) = 39.1 g/mol and Ar(S) = 32.1 g/mol. Mr(K2S) = 2Ar(K) + Ar(S) = 2 * 39.1 + 32.1 = 110.3 g/mol. Thus, there are 110.3 g per 1 mol. There will be x grams in 3.3 moles. 110.3 g : 1 mol = x : 3.3 mol. x = 110.3 g * 3.3 mol : 1 mol = 363.99 g.</span>