Answer:
The correct option is;
The graduate cylinder with more water has more thermal energy because it is holding more water molecules
Explanation:
Given that the thermal energy of the system is the energy possessed by the system by virtue of the increased motion of the particles by virtue of a transfer of heat, when the content of the system is heated
The thermal energy, Q is given by the following equation;
Q = Mass, m × The specific heat capacity, C × The change in temperature, ΔT
Given that the graduated cylinder with more water has more mass and therefore, more water molecules, than the cylinder with less water, the cylinder with more water has more thermal energy.
Answer:
Term 1 = (0.616 × 10⁻⁵)
Term 2 = (7.24 × 10⁻⁵)
Term 3 = (174 × 10⁻⁵)
Term 4 = (317 × 10⁻⁵)
(σ ₑ/ₘ) / (e/m) = (499 × 10⁻⁵) to the appropriate significant figures.
Explanation:
(σ ₑ/ₘ) / (e/m) = (σᵥ /V)² + (2 σᵢ/ɪ)² + (2 σʀ /R)² + (2 σᵣ /r)²
mean measurements
Voltage, V = (403 ± 1) V,
σᵥ = 1 V, V = 403 V
Current, I = (2.35 ± 0.01) A
σᵢ = 0.01 A, I = 2.35 A
Coils radius, R = (14.4 ± 0.3) cm
σʀ = 0.3 cm, R = 14.4 cm
Curvature of the electron trajectory, r = (7.1 ± 0.2) cm.
σᵣ = 0.2 cm, r = 7.1 cm
Term 1 = (σᵥ /V)² = (1/403)² = 0.0000061573 = (0.616 × 10⁻⁵)
Term 2 = (2 σᵢ/ɪ)² = (2×0.01/2.35)² = 0.000072431 = (7.24 × 10⁻⁵)
Term 3 = (2 σʀ /R)² = (2×0.3/14.4)² = 0.0017361111 = (174 × 10⁻⁵)
Term 4 = (2 σᵣ /r)² = (2×0.2/7.1)² = 0.0031739734 = (317 × 10⁻⁵)
The relative value of the e/m ratio is a sum of all the calculated terms.
(σ ₑ/ₘ) / (e/m)
= (0.616 + 7.24 + 174 + 317) × 10⁻⁵
= (498.856 × 10⁻⁵)
= (499 × 10⁻⁵) to the appropriate significant figures.
Hope this Helps!!!
20.3 divided by 3.0 will get u velocity and v times 3.0s
Answer:
B. Solar energy
Explanation:
The water cycle is driven primarily by the energy from the sun. This solar energy drives the cycle by evaporating water from the oceans, lakes, rivers, and even the soil. Other water moves from plants to the atmosphere through the process of transpiration.