Answer:
50000 N
Explanation:
From the question given above, the following data were obtained:
Mass (m) of bullet = 0.050 kg
velocity (v) = 400 m/s
Distance (s) = 0.080 m
Force (F) =?
Next, we shall determine the acceleration of the bullet. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 400 m/s
Distance (s) = 0.080 m
Acceleration (a) =?
v² = u² + 2as
400² = 0 + (2 × a × 0.08)
160000 = 0 + 0.16a
160000 = 0.16a
Divide both side by 0.16
a = 160000 / 0.16
a = 1×10⁶ m/s²
Finally, we shall determine the force exerted by the bullet on the target. This can be obtained as follow:
Mass (m) of bullet = 0.050 kg
Acceleration (a) of bullet = 1×10⁶ m/s²
Force (F) =?
F = ma
F = 0.050 × 1×10⁶
F = 50000 N
Thus, the bullet exerted a force of 50000 N on the target.
S=56, u=0, v=33, a=?, t=3.4
v=u+at
33=3.4 a
a = 9.7m/s^2
Explanation:
The given data is as follows.
Mass of the ornament (
) = 0.9 kg
Length of the wire (l) = 1.5 m
Mass of missile (
) = 0.4 kg
Initial speed of missile (
) = 12 m/s
r = 1.5 m
According to the law of conservation of momentum,

Putting the given values into the above formula as follows.


0 + 4.8 = 1.3v
v = 3.69 m/s
Now, the centrifugal force produced is calculated as follows.

= 
= 11.80 N
Hence, tension in the wire is calculated as follows.
T = 
= 
= 24.54 N
Thus, we can conclude that tension in the wire immediately after the collision is 24.54 N.
<span>If you think about it, changing the scale to which something is measured does not affect the repeatability of the measurement. For instance, if you have a meter stick which was labeled incorrectly, that doesn't affect the fact that every measurement you take of a certain fixed distance will still be the same. Precision does not equal accuracy.</span>