answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arlecino [84]
2 years ago
8

Hydrogen iodide decomposes according to the equation: 2HI(g) H 2(g) + I 2(g), K c = 0.0156 at 400ºC A 0.660 mol sample of HI was

injected into a 2.00 L reaction vessel held at 400ºC. Calculate the concentration of HI at equilibrium.
Chemistry
1 answer:
Ira Lisetskai [31]2 years ago
7 0

Answer:

[HI] = 0.264M

Explanation:

Based on the equilibrium:

2HI(g) ⇄ H₂(g) + I₂(g)

It is possible to define Kc of the reaction as the ratio between concentration of products and reactants using coefficients of each compound, thus:

<em>Kc = 0.0156 = [H₂] [I₂] / [HI]²</em>

<em />

As initial concentration of HI is 0.660mol / 2.00L = <em>0.330M, </em>the equlibrium concentrations will be:

[HI] = 0.330M - 2X

[H₂] = X

[I₂] = X

<em>Where X is reaction coefficient.</em>

<em />

Replacing in Kc:

0.0156 = [X] [X] / [0.330M - 2X]²

0.0156 = X² / [0.1089 - 1.32X + 4X² ]

0.00169884 - 0.020592 X + 0.0624 X² = X²

0.00169884 - 0.020592 X - 0.9376 X² = 0

Solving for X:

X = - 0.055 → False solution, there is no negative concentrations

X = 0.0330 → Right solution.

Replacing in HI formula:

[HI] = 0.330M - 2×0.033M

<h3>[HI] = 0.264M</h3>

You might be interested in
The first step in the Ostwald process for producing nitric acid is 4NH3(g) + 5O2(g) --&gt; 4NO(g) + 6H2O(g). If the reaction of
wel

Answer:

a. 77%

Explanation:

To solve the exercise, you need to know the limiting reagent. The limiting reagent is one that is consumed first in the chemical reaction. The other reagent is known as an excess reagent, and it is the one left over in a chemical reaction.

To know if ammonia or oxygen is the limiting reagent, we should relate the weights of both compounds in the reaction. We know that 4NH3 (68 g) react with 5O2 (160 g), so we should find out how much NH3 is required to react with 150 g of O2:

160 g O2 _______ 68 g NH3

150 g O2 _______ x = 150 g * 68 g / 160 g = 63.75 g NH3

As we have 150 g of NH3 but only 63.75 g are required, we know that ammonia is the excess reagent, so oxygen is the reagent that limits the reaction and that we should use to calculate the percentage yield of the reaction.

In the reaction we observe that 5O2 (160 g) produces 4NO (120g), so:

160 g O2 ______ 120 g NO

150 g O2 ______ x = 150 g * 120 g / 160 g = 112.5 g NO

If the percent yield of the reaction were 100%, it would produce 112.5 g of NO, however only 87 g of NO were obtained, so we should find out what the percentage of reaction yield was:

112.5 g NO ______ 100%

87 g NO _______ x = 87g * 100% / 112.5 g = 77%

Thus we observe that the reaction had a yield of 77%.

7 0
2 years ago
Read 2 more answers
5. Rubbing alcohol is a commonly used disinfectant and has a cooling effect when applied to the skin. The active ingredient in r
WITCHER [35]

Answer:

Explanation:

70% (vol/vol) means

cotnaimns 70 %(vol/vol) 70 ml of isoprapnol is there in 100 ml of Rubbing sold alcohol.

if it is 200 ml then obvouly it has the 70*2 =140 ml of isoproanol  required.

8 0
2 years ago
How many moles of tungsten (W,183.85 g/lol are in 415 grams of tungsten?
vladimir1956 [14]

Given mass of tungsten, W = 415 g

Molar mass of tungsten, W = 183.85 g/mol

Calculating moles of tungsten from mass and molar mass:

415 g * \frac{1 mol}{183.85 g} = 2.26 mol W

7 0
2 years ago
50 kg of N2 gas and 10kg of H2 gas are mixed to produce NH3 gas calculate the NH3gas formed. Identify the limiting reagent in th
statuscvo [17]

Answer:

1. H2 is the limiting reactant.

2. 56666.67g ( i.e 56.67kg) of NH3 is produced.

Explanation:

Step 1:

The equation for the reaction. This is given below:

N2 + H2 —> NH3

Step 2:

Balancing the equation.

N2 + H2 —> NH3

The above equation can be balanced as follow :

There are 2 atoms of N on the left side and 1 atom on the right side. It can be balance by putting 2 in front of NH3 as shown below:

N2 + H2 —> 2NH3

There are 6 atoms of H on the right side and 2 atoms on the left side. It can be balance by putting 3 in front of H2 as shown below

N2 + 3H2 —> 2NH3

Now the equation is balanced.

Step 3:

Determination of the masses of N2 and H2 that reacted and the mass of NH3 produced from the balanced equation. This is illustrated below:

N2 + 3H2 —> 2NH3

Molar Mass of N2 = 2x14 = 28g/mol

Molar Mass of H2 = 2x1 = 2g/mol

Mass of H2 from the balanced equation = 3 x 2 = 6g

Molar Mass of NH3 = 14 + (3x1) = 14 + 3 = 17g/mol

Mass of NH3 from the balanced equation = 2 x 17 = 34g

From the balanced equation above,

28g of N2 reacted with 6g of H2 to produce 34g of NH3

Step 4:

Determination of the limiting reactant. This is illustrated below:

N2 + 3H2 —> 2NH3

Let us consider using all the 10kg (i.e 10000g) of H2 to see if there will be any left of for N2.

From the balanced equation above,

28g of N2 reacted with 6g of H2.

Therefore, Xg of N2 will react with 10000g of H2 i.e

Xg of N2 = (28 x 10000)/6

Xg of N2 = 46666.67g

We can see from the calculations above that there are leftover for N2 as only 46666.67g reacted out of 50kg ( i.e 50000g) that was given. Therefore, H2 is the limiting reactant.

Step 5:

Determination of the mass of NH3 produced during the reaction. This is illustrated below:

N2 + 3H2 —> 2NH3

From the balanced equation above,

6g of H2 reacted to produce 34g of NH3.

Therefore, 10000g of H2 will react to produce = ( 10000 x 34)/6 = 6g of 56666.67g of NH3.

Therefore, 56666.67g ( i.e 56.67kg) of NH3 is produced.

3 0
2 years ago
Read 2 more answers
Calculate the freezing point of a 0.08500 m aqueous solution of nano3. the molal freezing-point-depression constant of water is
Citrus2011 [14]
Depression in freezing point (ΔT_{f}) = K_{f}×m×i,
where, K_{f} = cryoscopic constant = 1.86^{0} C/m,
m= molality of solution = 0.0085 m
i = van't Hoff factor = 2 (For NaNO_{3})

Thus, (ΔT_{f}) = 1.86 X 0.0085 X 2 = 0.03162^{0}C

Now, (ΔT_{f}) = T^{0} - T
Here, T = freezing point of solution
T^{0} = freezing point of solvent = 0^{0}C
Thus, T = T^{0} - (ΔT_{f}) = -0.03162^{0}C
8 0
2 years ago
Read 2 more answers
Other questions:
  • A bird building a nest for its young is a reproductive strategy. Based on this example, what do you think the term “reproductive
    6·2 answers
  • Two well-known complex ions containing ni are [ni(h2o)6]2+, which is green, and [ni(en)3]2+, which is purple. which one of these
    10·1 answer
  • The molar mass of c3h8o2 (four significant figures) is ________.
    6·1 answer
  • How many equivalents are in 0.60 mole of Mg2+
    7·1 answer
  • The structure of carbonic acid, an important component of ocean chemistry, is depicted below. What type of model best describes
    10·2 answers
  • 5. Given the cell notation Cu(s)|Cu2+(aq)||Ag+(aq)|Ag(s), what is the half-reaction that occurs at the anode?
    5·2 answers
  • USATEST PREP QUESTION HELP ! Really appreciate it !
    14·2 answers
  • What are the respective central-metal oxidation state, coordination number, and overall charge on the complex ion in Na2[Cr(NH3)
    14·1 answer
  • Methane and chlorine react to form chloromethane, CH3Cl and hydrogen chloride. When 29.8 g of methane and 40.3 g of chlorine gas
    10·2 answers
  • Simon has collected three samples from the coral reef where he observes marine life. He must determine whether each one is a pur
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!