Answer:
Iron‑56 is the most abundant isotope, so the atomic mass of iron is most similar to the mass of iron‑56.
Explanation:
The atomic abundance of the isotopes of Iron is:
⁵⁴Fe: 5.82%
⁵⁶Fe: 91.66%
⁵⁷Fe: 2.19%
⁵⁸Fe: 0.33%
<em>Where the Iron-56 is the most abundant isotope of Iron atom</em>
<em />
As atomic mass is defined as the sum of the masses of the ions multiplied by its abundance, and the Iron-56 is the most abundance isotope, the atomic mass of Fe most be similar to the ⁵⁶Fe mass because is the most abundant isotope.
Right option is:
<h3>Iron‑56 is the most abundant isotope, so the atomic mass of iron is most similar to the mass of iron‑56.</h3>
<span>A dim white dwarf star, this is a star with a similar mass to earth. This star has no further fusion reactions at it's core. After this type of star has used up all of it's energy it will become a black dwarf star. Usually they are composed of oxygen and carbon. Sirius a and b are both white dwarf stars that orbit each other.</span>
Answer: Endothermic reaction
Explanation:
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat and
for the reaction comes out to be positive.
As the energy of reactants is 180 kJ and that of products is 300 kJ, the energy of products is greater than that of reactants, which means the energy has been absorbed and reaction is endothermic.
Answer:
The partial pressure of Ar is 356.04 mm Hg (= 0.4685 atm)
Explanation:
<u>Step 1:</u> Data given
A mixture of three gases has a total pressure of 1380 mm Hg (=1.81579 atm) at 298 K
Moles of CO2 = 1.27 moles
Moles of CO = 3.04 moles
Moles of Ar = 1.50 moles
<u>Step 2:</u> Calculate total number of moles
Total number of moles = n(CO2)+ n(CO)+ n(Ar) = 1.27 mol+ 3.04 mol+ 1.50 mol = 5.81 moles
<u>Step 3:</u> Calculate mol fraction Ar
Mol fraction Ar = 1.50 mol/5.81 mol = 0.258
<u>Step 4</u>: Calculate partial pressure
1380 mm Hg * 0.258 moles Ar = 356.04 mm Hg = 0.4685 atm
The partial pressure of Ar is 356.04 mm Hg (= 0.4685 atm)
Answer:
Not sure what the answer is
Explanation:
I did this a while ago and dont remember sorry