answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KiRa [710]
2 years ago
7

Since you analyzed the charging of a capacitor for a DC charging voltage, how is it possible that you

Physics
1 answer:
alisha [4.7K]2 years ago
5 0

Answer:

 I = E/R   e^{-t/RC}

Explanation:

In a capacitor charging circuit you must have a DC power source, the capacitor, a resistor, and a switch. When closing the circuit,

                  E -q / c-IR = 0

we replace the current by its expression and divide by the resistance

                   I = dq / dt

                 

                   dq / dt = E / R  -q / RC

                   dq / dt = (CE -q) / RC

we solve the equation

                   dq / (Ce-q) = -dt / RC

we integrate and evaluate for the charge between 0 and q and for the time 0 and t

                   ln (q-CE / -CE) = -1 /RC   (t -0)

eliminate the logarithm

              q - CE = CE e^{-t/RC}

               q = CE (1 + 1/RC  e^{-t/RC} )

In general the teams measure the current therefore we take the derivative to find the current

               i = CE (e^{-t/RC} / RC)

               I = E/R   e^{-t/RC}

This expression is the one that describes the charge of a condensate in a DC circuit

You might be interested in
You decide to work at a heart rate of 150 instead of 120. What area of F.I.T.T. did you change?
Rina8888 [55]

Key concepts

Heart rate

Exercising

The heart

Cardiovascular system

Health

Introduction

As Valentine's Day approaches, we're increasingly confronted with "artistic" images of the heart. Real hearts hardly resemble to two-lobed shapes adorning cards and candy boxes this time of year. And the actual shape of the human heart is important for its function of supplying blood to the entire body. You have likely noticed that your heart beats more quickly when you exercise. But have you ever taken the time to observe how long it takes to return to its normal rate after you're done exercising? In this science activity you'll get to do some exercises to explore your own heart-rate recovery time.

Background

Your heart is continuously beating to keep blood circulating throughout your body. Its rate changes depending on your activity level; it is lower while you are asleep and at rest and higher while you exercise—to supply your muscles with enough freshly oxygenated blood to keep the functioning at a high level. Because your heart is also a muscle, exercise, in turn, helps keep it healthy. The American Heart Association recommends that a person does exercise that is vigorous enough to raise their heart rate to their target heart-rate zone—50 percent to 85 percent of their maximum heart rate, which is 220 beats per minute (bpm) minus their age for adults—for at least 30 minutes on most days, or about 150 minutes a week in total. So for a 20-year-old, the maximum heart rate would be 200 bpm, with a target heart-rate zone of 100 to 170 bpm. (For those 19 or younger, target zones can vary more than they do for adults.)

i think it will help you...if it help you ...please mark brainless

8 0
2 years ago
Rock X is released from rest at the top of a cliff that is on Earth. A short time later, Rock Y is released from rest from the s
frosja888 [35]

Answer:

C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀)  we see that for the same t v₁> v₂

Explanation:

You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.

Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.

Stone 1

    y₁ = v₀₁ t + ½ g t²

    y₁ = 0 + ½ g t²

Rock2

It comes out a little later, let's say a second later, we can use the same stopwatch

     t ’= (t-t₀)

    y₂ = v₀₂ t ’+ ½ g t’²

    y₂ = 0 + ½ g (t-t₀)²

    y₂ = + ½ g (t-t₀)²

Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to

    S = y₁ -y₂

    S = ½ g t²– ½ g (t-t₀)²

    S = ½ g [t² - (t²- 2 t to + to²)]  

    S = ½ g (2 t t₀ - t₀²)

    S = ½ g t₀ (2 t -t₀)

This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.

For t <to.  The rock y has not left and the distance increases

For t> = to.  the ratio (2t/to-1)> 1 therefore the distance increases as time

passes

Now we can analyze the different statements

A) false. The difference in height increases over time

B) False S increases

C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t   v₁> v₂

3 0
2 years ago
4. In a closed system consisting of a cannon and a cannonball, the kinetic energy of a cannon is 72,000 J. If the cannonball is
FromTheMoon [43]

Answer:

D an B

Explanation:

3 0
2 years ago
Read 2 more answers
g A projectile is launched with speed v0 from point A. Determine the launch angle ! which results in the maximum range R up the
Svetlanka [38]

Answer:

The range is maximum when the angle of projection is 45 degree.

Explanation:

The formula for the horizontal range of the projectile is given by

R = \frac{u^{2}Sin2\theta }{g}

The range should be maximum if the value of Sin2θ is maximum.

The maximum value of Sin2θ is 1.

It means 2θ = 90

θ = 45

Thus, the range is maximum when the angle of projection is 45 degree.

If the angle of projection is 0 degree

R = 0

It means the horizontal distance covered by the projectile is zero, it can move in vertical direction.

If the angle of projection is 30 degree.

R = \frac{u^{2}Sin60 }{9.8}

R = 0.088u^2

If the angle of projection is 45 degree.

R = \frac{u^{2}Sin90 }{g}

R = u^2 / g

5 0
2 years ago
Suppose you are measuring the height of a small child. What will determine the number if significant digits you record?
slega [8]

The number of significant digits of any measurement is determined by the instrument used for such measurement. For example, in this case, we have the height of a small child being measured. We can use a simple ruler for this, and we see that a ruler has ten divisions for 1 cm. This means that the ruler cannot measure beyond the size of 0.1 cm or 1 mm. Hence, when we report the height of the small child, we report it to one significant digit after the decimal place. As an example, if we measure a child's height to be 90 full cm divisions and 8 smaller divisions, we report it as 90.8 cm but not 90.83 or 90.86 cm.

8 0
2 years ago
Other questions:
  • What body process converts physical energy to electrical energy?
    9·1 answer
  • A skateboarder with a mass of 45 kilograms is riding on a skateboard with a mass of 2.5 kilograms. What should be the velocity o
    5·2 answers
  • What geologic features might form at the surface of plate A?
    8·1 answer
  • A straight wire 20 cm long, carrying a current of 4 A, is in a uniform magnetic field of 0.6 T. What is the force on the wire wh
    15·2 answers
  • A suspicious-looking man runs as fast as he can along a moving sidewalk from one end to the other, taking 2.20 s. Then security
    7·1 answer
  • A series circuit has two 10-ohm bulb is added in a series. Technician A says that the three bulbs will be dimmer than when only
    14·1 answer
  • When a car drives along a "washboard" road, the regular bumps cause the wheels to oscillate on the springs. (What actually oscil
    10·1 answer
  • Express the volume expansivity and the isothermal compressibility as functions of density rho and its partial derivatives. For w
    6·1 answer
  • To move a suitcase up to the check-in stand at the airport a student pushes with a horizontal force through a distance of 0.95 m
    9·1 answer
  • A statue and a coin are made out of exactly the same materials. Which property would you claim will likely be the same for both
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!