answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klio [65]
1 year ago
10

If a key is pressed on a piano, the frequency of the resulting sound will determine the ________, and the amplitude will determi

ne the ________ of the perceived musical note.
Physics
2 answers:
Arada [10]1 year ago
8 0

Answer:

The frequency will determine the pitch

the amplitude will determine the loudness

Explanation:

The frequency of a sound refers to the number of vibrations made by the sound wave produced in a unit of time. This usually affects how high or how low a note is perceived in music. High-frequency sounds have higher pitches, while low-frequency sounds have lower pitches.

The amplitude of a sound wave refers to the height between the wave crests and the equilibrium line in a sound wave. It shows how loud a sound will be. High amplitude sounds are loud while low amplitude sounds are quiet.

MakcuM [25]1 year ago
5 0

Answer:

If a key is pressed on a piano, the frequency of the resulting sound will determine the ___PITCH_____, and the amplitude will determine the _____LOUDNESS___ of the perceived musical note.

Explanation:

The frequency of a vibrating string is primarily based on three factors:

The sounding length (longer is lower, shorter is higher)

The tension on the string (more tension is higher, less is lower)

The mass of the string, normally based on a uniform density per unit length (higher mass is lower, lower mass is higher)

To make a shorter string (such as in an upright piano) sound the same fundamental frequency as a longer string (such as in a 9' grand piano), either the thickness of the string must be increased (which increases the density and the mass) or the tension must be decreased, and usually it's a bit of both.

Thicker strings are often stiffer and that creates more inharmonic partials, and lower tension is associated with other problems, so the best way to make a string sound lower is the make it longer, but it is not practical to make a piano from strings that are all the same density and tension, because the lowest strings would have to be ridiculously long. Nine feet is already a great demand on space for a single musical instrument, and of course those pianos are extremely expensive and difficult to move.

And alsoBesides the pitch of a musical note, perhaps the most noticeable feature in how loud the note is. The loudness of a sound wave is determined from its amplitude. While loudness is only associated with sound waves, all types of waves have an amplitude. Waves on a calm ocean may be less than 1 foot high. Good surfing waves might be 10 feet or more in amplitude. During a storm the amplitude might increase to 40 or 50 feet.

Many things can influence the amplitude.

What is producing the sound?

How far are you from the source of the sound? The farther away the smaller the amplitude.

Intervening material. Sound does not travel through walls as well as air.

Depends on what is detecting the wave sound. Ear vs. microphone.

You might be interested in
If a sound with frequency fs is produced by a source traveling along a line with speed vs. If an observer is traveling with spee
Alexus [3.1K]

Answer:

457.81 Hz

Explanation:

From the question, it is stated that it is a question under Doppler effect.

As a result, we use this form

fo = (c + vo) / (c - vs) × fs

fo = observed frequency by observer =?

c = speed of sound = 332 m/s

vo = velocity of observer relative to source = 45 m/s

vs = velocity of source relative to observer = - 46 m/s ( it is taking a negative sign because the velocity of the source is in opposite direction to the observer).

fs = frequency of sound wave by source = 459 Hz

By substituting the the values to the equation, we have

fo = (332 + 45) / (332 - (-46)) × 459

fo = (377/ 332 + 46) × 459

fo = (377/ 378) × 459

fo = 0.9974 × 459

fo = 457.81 Hz

7 0
2 years ago
Water (cp = 4180 J/kg·K) is to be heated by solar-heated hot air (cp = 1010 J/kg·K) in a double-pipe counter-flow heat exchanger
Inessa [10]

Answer:

452%

Explanation:

3 0
2 years ago
Whennes
rodikova [14]

Answer:

See the explanation below.

Explanation:

12) When an object is falling, how does the objects velocity change? what formula do you use?

The speed of a falling object is increased by a value of 9.81 meters per second per second. That is if we throw any body regardless of mass from a considerable height, its speed in the first second will be 9.81[ m/ s] , in the next second will be equal to 19.62 [m/s] in the next will be equal to 29.43 [m/ s].

The formula is:

v=v_{0}+g*t

where:

vo = initial velocity = 0

g = gravity = 9.81[m/s^2]

t = time [s]

13)

what is a falling speed at 6s, 9s, 112s?

v = 0 + (9.81*6) = 58.86[m/s]

v = 0 + (9.81*9) = 88.29 [m/s]

v = 0 + (9*112) = 1098.72 [m/s]

14)

If an object is falling at 65 [m/s]. How long has it been falling ? what is the formula that you use?

The formula is the same:

v=v_{o}+g*t

65 = 0 + 9.81*t

t = 65/9.81

t = 6.62[s]

15)

What formula is used to determine the distance an object is falling ?

y = y_{o}+v_{o}*t + 0.5*9.81*t^{2}

where:

y = distance [m]

yo = initial distance, in most of the cases and depending of the reference point it will be eqaul to zero

vo = initial velocity, if it is free fall, then = 0

t = time [s]

g = gravity = 9.81[m/s^2]

This equation will be reduce to:

y =   0.5*g*t^{2}

16)

using the times given in problem 13. Determine the distance fallen for each.

y = 0.5*9,81*(6)^2 = 176.58 [m]

y = 0.5*9,81*(9)^2 = 397.3 [m]

y = 0.5*9,81*(112)^2 = 61528.3 [m]

17)

If an object has fallen a distance of 87.3 [m]. How long was it falling?

87.3 = 0.5*9.81*t^2

t=\sqrt{\frac{87.3}{0.5*9.81} }\\ t=4.21[s]

4 0
2 years ago
Which of the following sketches represents a possible configuration for this problem?
garri49 [273]
Where are the following sketches?
7 0
2 years ago
A ball is thrown through the air.What condition(s) would enable the ball to continue in its state of motion?
Aleksandr-060686 [28]
I think that the answer is c but I’m not sure
5 0
2 years ago
Read 2 more answers
Other questions:
  • Which of the following statements about horizons is true?
    13·2 answers
  • An ant travels 2.78 cm [W] and then turns and travels 6.25 cm [S 40 degrees E]. What is the ant's total displacement?
    14·1 answer
  • What are the approximate boiling points for the c2, c4, c6, and c8 alkanes?
    8·1 answer
  • The sound level at 1.0 m from a certain talking person talking is 60 dB. You are surrounded by five such people, all 1.0 m from
    15·1 answer
  • If the intensity level by 15 identical engines in a garage is 100 dB, what is the intensity level generated by each one of these
    10·1 answer
  • The flight of a kicked football follows the quadratic function f(x)=−0.02x2+2.2x+2, where f(x) is the vertical distance in feet
    14·1 answer
  • Two spheres of mass M and 2M float in space in the absence of external gravitational forces, as shown in the figure. Which of th
    5·1 answer
  • The spectrum of Star A has an absorption line of hydrogen at 660.0 nm. The spectrum of Star B has an absorption line at 666 nm.
    15·1 answer
  • You are to design a rotating cylindrical axle to lift 800 N buckets of cement from the ground to a rooftop 78.0 m above the grou
    10·1 answer
  • "For a first order instrument with a sensitivity of .4 mV/K and a time" constant of 25 ms, find the instrument’s response as a f
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!