answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grin007 [14]
2 years ago
7

Dennis throws a volleyball up in the air. It reaches its maximum height 1.1\, \text s1.1s1, point, 1, start text, s, end text la

ter. We can ignore air resistance. What was the volleyball's velocity at the moment it was tossed into the air?
Physics
2 answers:
lora16 [44]2 years ago
7 0

Answer:

11

Explanation:

for khan academy, this is the answer

rewona [7]2 years ago
5 0

Answer:

If max height = 1.1 meters, then initial velocity is 3.28 m/s

If max height is 1.1 feet, then the initial velocity is 5.93  ft/s

Explanation:

Recall the formulas for vertical motion under the acceleration of gravity;

for the vertical velocity of the object we have

v=v_0-g \,t

for the object's vertical displacement we have

y-y_0=v_0\,t - \frac{g}{2} \,t^2

If the maximum height reached by the object is given in meters, we use the value for g in m/s^2 which is: 9.8\,\,m/s^2

If the maximum height of the object is given in feet, we use the value for g in  ft/s^2  which is : 32\,\,ft/s^2

Now, when the ball reaches its maximum height, the ball's velocity is zero, so that allows us to solve for the time (t) the process of reaching the max height takes:

v=v_0-g \,t\\0=v_0-g \,t\\g\,\,t=v_0\\t=\frac{v_0}{g}

and now we use this to express the maximum height in the second equation we typed:

y-y_0=v_0\,t - \frac{g}{2} \,t^2\\max\,height=v_0\,(\frac{v_0}{g})  - \frac{g}{2} \,(\frac{v_0}{g})^2\\max\,height= \frac{v_0^2}{2\,g}

Then if the max height is 1.1 meters, we use the following formula to solve for v_0:

1.1= \frac{v_0^2}{2\,9.8}\\(9.8)\,(1.1)=v_0^2\\v_0=10.78\\v_0=\sqrt{10.78} \\v_0=3.28\,\,m/s

If the max height is 1.1 feet, we use the following formula to solve for v_0:

1.1= \frac{v_0^2}{2\,32}\\(32)\,(1.1)=v_0^2\\v_0=35.2\\v_0=\sqrt{35.2} \\v_0=5.93\,\,ft/s

You might be interested in
Upon impact, bicycle helmets compress, thus lowering the potentially dangerous acceleration experienced by the head. A new kind
Dimas [21]

Answer:

acceleration = -15.3g

Explanation:

given data

speed = 6.00 m/s.

thickness = 12

moves the entire = 12.0 cm

solution

we will use here equation that is

v² - u²  = 2 × a × s    ........................1

here v = 0 is the final velocity and u = 6.0 m/s is initial velocity and s= 0.12 m is the distance covered and a is the acceleration

so we put here value and get acceleration

a = \frac{v^2-u^2}{2s}

a = \frac{0^2-6^2}{2\times 0.12}

a = -150 m/s² ( negative sign means it is a deceleration )

and

acceleration in units of g  

a = \frac{-150}{9.8}

a = -15.3 g

6 0
2 years ago
When you urinate, you increase pressure in your bladder to produce the flow. For an elephant, gravity does the work. An elephant
weqwewe [10]

Answer:

a) v =  1.19 m / s , b)   P₁ = 0.922 10⁵ Pa

Explanation:

1) Let's use the fluid continuity equation

       Q = A v

The area of ​​a circle is

      A = π r2 = π d²/4

     

     v = Q / A = Q 4 / pi d²

     v = 0.006 4/π 0.08²

     v =  1.19 m / s

2) write Bernoulli's equation, where point 1 is the bladder and point 2 is the urine exit point

     P₁ + ½ rho v₁² + rho g y₁ = P₂ + ½ rho v₂² + rho g y₂

The exercise tell us

P₂ = 1.0013 105 Pa

v₁ = 0

y₁ = 1 m

y₂=0  

Rho (water) = 1000 kg / m³

      P₁ + rho y₁ = P₂ + ½ rho v₂²

      P₁ = P₂ + ½ rho v₂² - rho g y₁

      P₁ = 1.013 10⁵ + ½ 1000 (1.19)² - 1000 9.8 1

      P₁ = 1.013 10⁵ +708.5  - 9800

      P₁ =  92208.5Pa

      P₁ = 0.922 10⁵ Pa

8 0
2 years ago
Have you ever chewed on a wintergreen mint in front of a mirror in the dark? If you have, you may have noticed some sparks of li
lutik1710 [3]

Answer:

Part a)

E = 3.66 eV

Part b)

\lambda = 508.5 nm

Explanation:

Part a)

change in the energy due to decay of photon is given as

E = h\nu

here we know that

\nu = 8.88 \times 10^{14} Hz

now we have

E = (6.6 \times 10^{-34})(8.88 \times 10^{14})

E = 5.86 \times 10^{-19} J

E = 3.66 eV

Part b)

While electron return to its ground state it will emit a photon of energy 2/3rd of the total energy

so we have

\Delta E = \frac{2}{3}(3.66 eV)

\Delta E = 2.44 eV

now to find the wavelength we have

\Delta E = \frac{hc}{\lambda}

2.44 = \frac{1242}{\lambda}

\lambda = 508.5 nm

3 0
2 years ago
Two astronauts of identical mass are connected by a taut cable of negligible mass, as shown in the figure above, and are initial
PolarNik [594]

Answer:

The right answer is "The center of mass doesn't move".

Explanation:

  • It generates a voltage throughout the cable while the astronaut falls on either the wire. At other ends of the spectrum or cable, the tension will be similar. As such, with both astronauts, there would be the same energy, although throughout the opposite way.
  • Thus, the net force seems to be essentially negative on the machine. And therefore the mass center stays stationary.
5 0
2 years ago
In mammals, the weight of the heart is approximately 0.5% of the total body weight. Write a linear model that gives the heart we
jekas [21]

Answer:

The weight of heart of a human is 0.93 lbs.

Explanation:

Given that,

Approximately weight of heart is 0.5 % of the total body weight.

Weight of human = 185 lbs

Let the the weight of total body is w and weight of heart is w_{h}.

We need to calculate the weight of heart of a human

Using given data

w_{h}=0.5\times w

Where, h = weight of heart

w = weight of human

w_{h}=\dfrac{0.5}{100}\times 185

w_{h}=0.93\ lbs

Hence, The weight of heart of a human is 0.93 lbs.

8 0
2 years ago
Other questions:
  • You are waiting to turn left into a small parking lot. a car approaching from the opposite direction has a turn signal on. you s
    14·1 answer
  • A 0.500-kg ball traveling horizontally on a frictionless surface approaches a very massive stone at 20.0 m/s perpendicular to wa
    9·1 answer
  • A physicist is constructing a solenoid. She has a roll of insulated copper wire and a power supply. She winds a single layer of
    10·1 answer
  • Water is stored in a municipal water tank at a mean height of 25 m. If a faucet of diameter 1.2 cm is opened in a house at groun
    7·1 answer
  • A rocket exhausts fuel with a velocity of 1500m/s, relative to the rocket. It starts from rest in outer space with fuel comprisi
    15·2 answers
  • A stiff wire bent into a semicircle of radius a is rotated with a frequency f in a uniform magnetic field, as suggested in Fig.
    13·1 answer
  • The circuit below represents four resistors connected to a 12-volt source. What is the total current in the circuit? 4.0Ω 6.0Ω 1
    11·2 answers
  • Three cars are tested in a 16 m/s frontal crash. The results of the crash tests are shown below, with data indicating how much t
    10·1 answer
  • Peter left Town A at 13:30 and travelled towards Town B at an
    11·1 answer
  • Sunitha can type 1800 words in half an hour. What is her typing speed in words per minute?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!