Given that,
Temperature, T = 1500 K
Wavelength, 
To find,
The energy of one photon of this light.
Solution,
We know that, the energy of a photon is given by the formula as follows :

So, the required energy is
.
Answer:
Explanation:
attached here is the diagram representing the structure
Answer:
Explanation:
An oxidizing accepts an electron and becomes reduced while a reducing agent loses an electron and become oxidized.
Chemical equation:
1) 2 N₂H₄ + N₂O₄ → 3 N₂ + 4 H₂O
2) Hydrazine ( N₂H₄) is being oxidized
Dinitrogen tetroxide N₂O₄ is being reduced
3) The reducing agent is Hydrazine ( N₂H₄) and the oxidizing agent is dinitrogen tetroxide (N₂O₄)
I think the answer is C for this question
Answer:
52 amu
Explanation:
To get the relative atomic mass of the element, we need to take into consideration, the atomic masses of the different isotopes and their relative abundances. We simply multiply the percentages with the masses. This can be obtained as follows:
[89/100 * 52] + [8/100 * 49] + [3/100 * 50]
46.28 + 3.92 + 1.5 =51.7 amu
The approximate atomic mass of element x is 52 amu