Answer: 
Step-by-step explanation:
<h3>
The complete exercise is: " A theatre has the capacity to seat people across two levels, the Circle, and the stalls. The ratio of the number of seats in the circle to a number of seats in the stalls is 2:5. Last Friday, the audience occupied all the 528 seats in the circle and
of the seats in the stalls. What is the percentage of occupancy of the theatre last Friday?"</h3>
Let be "s" the total number of seats in the Stalls.
The problem says that the ratio of the number of seats in the Circle to the number of seats in the Stalls is
.
Since the number of seats that were occupied last Friday was 528 seats, we can set up the following proportion:

Solving for "s", we get:

So the sum of the number of seats in the Circle and the number of seats in the Stalls, is:
We know that
of the seats in the Stalls were occupied. Then, the number of seat in the Stalls that were occupied is:

Therefore, the total number of seats that were occupied las Friday is:
Knowing this, we can set up the following proportion, where "p" is the the percentage of occupancy of the theatre last Friday:

Solving for "p", we get:

Answer:
The correct answer is
(0.0128, 0.0532)
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence interval
, we have the following confidence interval of proportions.

In which
Z is the zscore that has a pvalue of 
For this problem, we have that:
In a random sample of 300 circuits, 10 are defective. This means that
and 
Calculate a 95% two-sided confidence interval on the fraction of defective circuits produced by this particular tool.
So
= 0.05, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The correct answer is
(0.0128, 0.0532)
Answer:
y = 16x/65
Step-by-step explanation:
Given:
Triangle ABE is similar to triangle ACD. AED and ABC are straight lines
EB and DC are parallel
The area of quadrilateral BCDE = xcm²
The area of triangle ABE = ycm²
Find attached the diagram from the above information.
In similar triangles, the ratio of their corresponding angles are equal.
Also, the ratio of the area of the two triangles = square of ratio of the corresponding sides of the two triangles.
Area ∆ACD/area of ∆ABE = (DC/EB)²
Area ∆ACD/area of ∆ABE = [(area of quadrilateral BCDE +
area of ∆ABE)]/(area of ∆ABE)
(x+y)/y = (DC/EB)²
(x+y)/y = (9/4)²
x+y = (81/16)y
x = (81/16)y - y
x = (81y - 16y)/16
x = 65y/16
Making y subject of formula
16x = 65y
y = 16x/65
An expression for y in terms of x:
y = 16x/65
(4 – 2i)(6 + 2i)
FOIL
First : 4*6 =24
Outer: 4*2i = 8i
Inner: -2i* 6 = -12i
Last: -2i*2i = -4i^2 =-4(-1) =4
Add together
24+8i-12i+4
28-4i
Answer: 28-4i