Answer:
1. From water vapor to the dry ice;
2. The potential energy is higher before the water vapor condenses;
3. The thermal energy is higher in the 2.0 kg block.
Explanation:
1. The heat flows from the system with high temperature to the system with low temperature. The water vapor is at 298 K, and the dry ice is at 194.5 K.
2. The energy of the molecules is related to the temperature and the physics state. At the gas state, the molecules are more agitated, and the energy is higher than the liquid state. So, when the vapor condenses to a liquid, the energy decreases.
3. The thermal energy can be calculated by:
Q = m*c*ΔT
Where m is the mass, c is the specific heat, and ΔT the variation in the temperature. So, when the mass increase, thermal energy also increases.
Answer:
Explanation has been given below.
Explanation:
- Chloroform has three polar C-Cl bonds. Methylene chloride has two polar C-Cl bonds. So it is expected that chloroform should be more polar and posses higher dipole moment than methylene chloride.
- Two factors are liable for the opposite trend observed in dipole moments of methylene chloride and chloroform.
- First one is the number of hyperconjugative hydrogen atoms present in a molecule. Hyperconjugation occurs with vacant d-orbital of Cl atom. Hyperconjugation amplifies charge separation in a molecule resulting higher dipole moment.
- Methylene chloride has two hyperconjugative hydrogen atoms and chloroform has one hyperconjugative hydrogen atom.Therefore methylene chloride should have higher charge separation as compared to chloroform.
- Second one is induction of opposite polarity in a C-Cl bond by another C-Cl bond in a molecule. Higher the opposite induction of polarity, lower the charge separation in a molecule and hence lower the dipole moment of a molecule.
- Chloroform has three C-Cl bonds and methylene chloride has two C-Cl bonds. Therefore opposite induction is higher for chloroform resulting it's lower dipole moment.
Answer : The vapor pressure (in atm) of a solution is, 0.679 atm
Explanation : Given,
Mass of
= 1.00 kg = 1000 g
Moles of
= 3.68 mole
Molar mass of
= 18 g/mole
Vapor pressure of water = 0.692 atm
First we have to calculate the moles of
.

Now we have to calculate the mole fraction of 

Now we have to partial pressure of solution.
According to the Raoult's law,

where,
= vapor pressure of solution
= vapor pressure of water = 0.692 atm
= mole fraction of water = 0.938



Therefore, the vapor pressure (in atm) of a solution is, 0.679 atm
Your compound is

.
Remember that the oxidation numbers in a neutral compound must add up to zero. Cl has an oxidation number of -1 because it is a halogen K has an oxidation number of +1 because it is an alkali metal, which exhibits an oxidation state of +1 in compounds.
Since you have 6 atoms of Cl, you have -1(6) = -6 for the Cl. Since you 2 atoms of K, you have +1(2) = +2 for the K. The oxidation number of Pt must make all the oxidation numbers add up to zero:
+2 + (-6) + oxidation number of Pt = 0
-4 + oxidation number of Pt = 0
Oxidation number of Pt = 4
Answer: Cu
Explanation: It is Cu because the origin of the word Copper comes from the latin word "Cuprum".