answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
2 years ago
12

A 75.0 kg sailor climbs a 28.3 m rope ladder at and angle of 45.0degrees with the mast. how much work did he do?

Physics
2 answers:
sladkih [1.3K]2 years ago
8 0
W = m · g · h
h = 28.3 m · sin 45° = 28.3 m · 0.707 = 20 m
g = 9.8 m/s²
W = 75 kg · 9.8 m/s² · 20 m
Answer:
W = 14,700 J = 14.7 kJ 

crimeas [40]2 years ago
7 0

Explanation :

It is given that,

mass of sailor, m = 75 Kg

length of rope, h = 28.3 m

work done, w=Fdcos\theta

w=mghcos\theta

w=75\ Kg\times 9.8\ m/s^2\times 28.3\ m\ cos(45)

w=10,816\ J

w=10.816\ kJ

Hence, it is the required solution.

You might be interested in
The image shows one complete cycle of a mass on a spring in simple harmonic motion. An illustration of a mass on a vertical spri
Alja [10]

Answer:

D. "The net force is zero, so the acceleration is zero"

Explanation:

edge 2020

6 0
2 years ago
Lasers are classified according to the eye-damage danger they pose. Class 2 lasers, including many laser pointers, produce visib
Alexus [3.1K]

Answer:

<em>a) 318.2 W/m^2</em>

<em>b) 2.5 x 10^-4 J</em>

<em>c) 1.55 x 10^-8 v/m</em>

<em></em>

Explanation:

Power of laser P = 1 mW = 1 x 10^-3 W

exposure time t = 250 ms = 250 x 10^-3 s

If beam diameter = 2 mm = 2 x 10^-3 m

then

cross-sectional area of beam A = \pi d^{2} /4 = (3.142 x (2*10^{-3} )^{2})/4

A = 3.142 x 10^-6 m^2

a) Intensity I = P/A

where P is the power of the laser

A is the cros-sectional area of the beam

I = ( 1 x 10^-3)/(3.142 x 10^-6) = <em>318.2 W/m^2</em>

<em></em>

b) Total energy delivered E = Pt

where P is the power of the beam

t is the exposure time

E = 1 x 10^-3 x 250 x 10^-3 = <em>2.5 x 10^-4 J</em>

<em></em>

c) The peak electric field is given as

E = \sqrt{2I/ce_{0} }

where I is the intensity of the beam

E is the electric field

c is the speed of light = 3 x 10^8 m/s

e_{0} = 8.85 x 10^9 m kg s^-2 A^-2

E = \sqrt{2*318.2/3*10^8*8.85*10^9}  = <em>1.55 x 10^-8 v/m</em>

6 0
2 years ago
A gas of helium atoms at 273 k is in a cubical container with 25.0 cm on a side. (a) what is the minimum uncertainty in momentum
qwelly [4]

wave function of a particle with mass m is given by ψ(x)={ Acosαx −

π

2α

≤x≤+

π

2α

0 otherwise , where α=1.00×1010/m.

(a) Find the normalization constant.

(b) Find the probability that the particle can be found on the interval 0≤x≤0.5×10−10m.

(c) Find the particle’s average position.

(d) Find its average momentum.

(e) Find its average kinetic energy −0.5×10−10m≤x≤+0.5×10−10m.

6 0
2 years ago
A particular material has an index of refraction of 1.25. What percent of the speed of light in a vacuum is the speed of light i
beks73 [17]

Answer:

80% (Eighty percent)

Explanation:

The material has a refractive index (n) of 1.25

Speed of light in a vacuum (c) is 2.99792458 x 10⁸  m/s

We can find the speed of light in the material (v) using the relationship

n = c/v, similarly

v = c/n

therefore v = 2.99792458 x 10⁸  m/s ÷ (1.25) = 239 833 966 m/s

v = 239 833 966 m/s

Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as

(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%

Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)

3 0
2 years ago
Read 2 more answers
Consider two waves defined by the wave functions y1(x,t)=0.50msin(2π3.00mx+2π4.00st) and y2(x,t)=0.50msin(2π6.00mx−2π4.00st). Wh
guapka [62]

Answer:

They two waves has the same amplitude and frequency but different wavelengths.

Explanation: comparing the wave equation above with the general wave equation

y(x,t) = Asin(2Πft + 2Πx/¶)

Let ¶ be the wavelength

A is the amplitude

f is the frequency

t is the time

They two waves has the same amplitude and frequency but different wavelengths.

4 0
2 years ago
Other questions:
  • a student moves a box across the floor by exerting 23.3 N of force and doing 47.2 J of work on the box. How far does the student
    9·1 answer
  • Describe the energy transformations that take place when a skier starts skiing down a hill but after a time is brought to rest b
    6·1 answer
  • Why do most objects tend to contain nearly equal numbers of positive and negative charges?
    5·2 answers
  • 1. The sedimentary rock known as conglomerate typically forms in _______ environments in which particles can become rounded, suc
    12·2 answers
  • A 5.0-g marble is released from rest in the deep end of a swimming pool. An underwater video reveals that its terminal speed in
    11·1 answer
  • A 1000 kilogram empty cart moving with a speed of 6.0 meters per second is about to collide with a stationary loaded cart having
    6·2 answers
  • A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6
    10·1 answer
  • Ocean waves are observed to travel to the right along the water surface during a developing storm. A Coast Guard weather station
    15·1 answer
  • Imagine a small child whose legs are half as long as her parent’s legs. If her parent can walk at maximum speed V, at what maxim
    15·1 answer
  • Sasha is ordered Ampicillin 50mg/kg/day x 48 hours, to be given every 6 hours in 100mls of N/S run over 30 minutes. The tubing h
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!