Explanation:
Eg = mgh
a. Eg = (2.00 kg) (9.8 m/s²) (12.0 m)
Eg = 235 J
b. Eg = (2.00 kg) (9.8 m/s²) (3.00 m)
Eg = 58.8 J
c. Eg = (2.00 kg) (9.8 m/s²) (4.50 m)
Eg = 88.2 J
d. When the coconut hits the bystander:
Ek = 235 J − 58.8 J = 176 J
When the coconut hits the ground:
Ek = 88.2 J − 0 J = 88.2 J
Ek is the greatest when the coconut hits the bystander.
Answer:
1.056 x 10⁷ lb-ft
Explanation:
v = Speed of the bike = 20 mph
t = time of travel = 2 h
d = distance traveled by cyclist
Distance traveled by cyclist is given as
d = v t
d = (20) (2)
d = 40 miles
We know that, 1 mile = 5280 ft
d = 40 (5280) ft
d = 211200 ft
F = force applied by cyclist = 50 lb
W = work done by cyclist
Work done by cyclist is given as
W = F d
W = (50) (211200)
W = 1.056 x 10⁷ lb-ft
Answer:
b
Explanation:
Pulling up with the rope would decrease the frictional force, pushing down would increase the frictional force.
Answer:
The angle between the blue beam and the red beam in the acrylic block is

Explanation:
From the question we are told that
The refractive index of the transparent acrylic plastic for blue light is 
The wavelength of the blue light is 
The refractive index of the transparent acrylic plastic for red light is 
The wavelength of the red light is 
The incidence angle is 
Generally from Snell's law the angle of refraction of the blue light in the acrylic block is mathematically represented as
![r_F = sin ^{-1}[\frac{sin(i) * n_a }{n_F} ]](https://tex.z-dn.net/?f=r_F%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%28i%29%20%2A%20%20n_a%20%7D%7Bn_F%7D%20%5D)
Where
is the refractive index of air which have a value of
So
![r_F = sin ^{-1}[\frac{sin(45) * 1 }{ 1.497} ]](https://tex.z-dn.net/?f=r_F%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%2845%29%20%2A%20%201%20%7D%7B%201.497%7D%20%5D)

Generally from Snell's law the angle of refraction of the red light in the acrylic block is mathematically represented as
![r_C = sin ^{-1}[\frac{sin(i) * n_a }{n_C} ]](https://tex.z-dn.net/?f=r_C%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%28i%29%20%2A%20%20n_a%20%7D%7Bn_C%7D%20%5D)
Where
is the refractive index of air which have a value of
So
![r_C = sin ^{-1}[\frac{sin(45) * 1 }{ 1.488} ]](https://tex.z-dn.net/?f=r_C%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%2845%29%20%2A%20%201%20%7D%7B%201.488%7D%20%5D)

The angle between the blue beam and the red beam in the acrylic block

substituting values


The car would go from zero to 58.0 mph in 2.6 sec.
Since the force on the car is constant, therefore the acceleration of the car would also be constant.
Now for constant acceleration we can use the equation of motion
Using first equation of motion to calculate the acceleration of the car
v=u+at
29=0+a×1.30 ...... Eq. (1)
Again using the first equation of motion
58=0+a*t ....... Eq. (2)
Dividing eq. (2) with equation 1
t=2×1.3
t=2.6 sec