Answer:
12.78 kJ
Explanation:
The correct balanced reaction would be

Mass of methanol = 
Moles of methanol can be obtained by dividing the mass of methanol with its molar mass 

Enthalpy change for the number of moles is given by


The change in enthalpy is 12.78 kJ.
Answer:
-1815.4 kJ/mol
Explanation:
Starting with standard enthalpies of formation you can calculate the standard enthalpy for the reaction doing this simple calculation:
∑ n *ΔH formation (products) - ∑ n *ΔH formation (reagents)
This is possible because enthalpy is state function meaning it only deppends on the initial and final state of the system (That's why is also possible to "mix" reactions with Hess Law to determine the enthalpy of a new reaction). Also the enthalpy of formation is the heat required to form the compound from pure elements, then products are just atoms of reagents organized in a different form.
In this case:
ΔH rxn = [(2 * -1675.7) - (3 * -520.0)] kJ/mol = -1815.4 kJ/mol
Answer: 
Explanation:

Here Mn undergoes oxidation by loss of electrons, thus act as anode. silver undergoes reduction by gain of electrons and thus act as cathode.

Where both
are standard reduction potentials.
![E^0_{[Mn^{2+}/Mn]}= -1.18V](https://tex.z-dn.net/?f=E%5E0_%7B%5BMn%5E%7B2%2B%7D%2FMn%5D%7D%3D%20-1.18V)
![E^0_{[Ag^{2+}/Ag]}=+0.80V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B2%2B%7D%2FAg%5D%7D%3D%2B0.80V)
![E^0=E^0_{[Ag^{+}/Ag]}- E^0_{[Mn^{2+}/Mn]}](https://tex.z-dn.net/?f=E%5E0%3DE%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D-%20E%5E0_%7B%5BMn%5E%7B2%2B%7D%2FMn%5D%7D)

The standard emf of a cell is related to Gibbs free energy by following relation:

= gibbs free energy
n= no of electrons gained or lost = 2
F= faraday's constant
= standard emf = 1.98V

Thus the value of
is 
This answer is 24 because 2.17 x 10 -8 is 24 so that would be your answer
<u>Answer:</u>
<u>For A:</u> The
for the given reaction is 
<u>For B:</u> The
for the given reaction is 1642.
<u>Explanation:</u>
The given chemical reaction follows:

The expression of
for the above reaction follows:

We are given:

Putting values in above equation, we get:

Hence, the
for the given reaction is 
Relation of
with
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = 
= equilibrium constant in terms of concentration = ?
R = Gas constant = 
T = temperature = 500 K
= change in number of moles of gas particles = 
Putting values in above equation, we get:

Hence, the
for the given reaction is 1642.