According to the kmt pressure is directly proportional to the number of collision between particles
The answer to this question would be: <span>thermal metamorphism
</span>
Metamorphism is a change in the mineral texture without causing the rock to become liquid/magma. In this case, the metamorphic change to the rock is caused by the heat energy or thermal energy of the magma. This kind of mechanism is also called contact mechanism as the thermal energy is transferred by contact so this question option is a bit ambiguous.
Answer:
Upper F subscript 2 (g) plus upper C a (s) right arrow with delta above upper C a upper F subscript 2 (s).
Explanation:
This is a chemical reaction problem.
In expressing any chemical reaction, we need to understand that there are reactants and products.
- The reactants are the species on the left hand side that are combining.
- The products are the species on the right hand side that are formed.
- Every chemical reaction is obeys the law of conservation of matter i.e equal number of matter on both sides.
Using the statement of this problem, we can deduce that;
Reactants are Fluorine gas and Calcium metal
Product is Calcium Fluoride
Note: A metal is a solid(s) and powder is a solid(s). A gas is denoted as (g). They depict the state of the species reacting.
F₂
+ Ca
→ CaF₂
We can see that equal number of atoms are on both sides of the expression.
We are given that the balanced chemical reaction is:
cacl2⋅2h2o(aq) +
k2c2o4⋅h2o(aq) --->
cac2o4⋅h2o(s) +
2kcl(aq) + 2h2o(l)
We known that
the product was oven dried, therefore the mass of 0.333 g pertains only to that
of the substance cac2o4⋅h2o(s). So what we will do first is to convert this
into moles by dividing the mass with the molar mass. The molar mass of cac2o4⋅h2o(s) is
molar mass of cac2o4 plus the
molar mass of h2o.
molar mass cac2o4⋅h2o(s) = 128.10
+ 18 = 146.10 g /mole
moles cac2o4⋅h2o(s) =
0.333 / 146.10 = 2.28 x 10^-3 moles
Looking at
the balanced chemical reaction, the ratio of cac2o4⋅h2o(s) and k2c2o4⋅h2o(aq) is
1:1, therefore:
moles k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles
Converting
this to mass:
mass k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles (184.24 g /mol) = 0.419931006 g
Therefore:
The mass of k2c2o4⋅<span>h2o(aq) in
the salt mixture is about 0.420 g</span>
1) Find the number of molecules in 7.88 g of sulfur
molar mass of S8 = 8*atomic mass of S = 8 * 32.0 g / mol = 256.0 g/mol
Number of moles = mass in grams / atomic mass = 7.88 g / 256.0 g / mol = 0.0308 moles
2) Find the mass of 0.0308 moles of P4
mass = number of moles * molar mass
molar mass of P4 = 4 * atomic mass of P = 4 * 31 g/mol = 124 g/mol
mass of P4 = 0.0308 moles * 124 g/mol = 3.8192g ≈ 3.82 g.
Answer: 3.82 grams of P4 will have the same number of molecules as 7.88 g of S8 (that is 0.0308 moles of molecules)