Answer:
Mitochondria are abundantly present in mammalian cells. Their fraction varies from tissue to tissue, ranging from <1% (volume) in white blood cells to 35% in heart muscle cells. However, mitochondria should not be thought of as single entities, but rather a dynamic network that continuously undergoes fission and fusion processes. In skeletal muscle, mitochondria exist as a reticular membrane network. The subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria are located in distinct subcellular regions, and they possess subtle differences in biochemical and functional properties that are characterized by their anatomical locations. SS mitochondria lie directly beneath the sarcolemmal membrane and the IMF mitochondria are located in close contact with the myofibril. Their different properties are likely to influence their capacity for adaptation. SS mitochondria account for 10-15% of the mitochondrial volume and this population has been shown to be more susceptible to adaptation than the IMF mitochondria. However, the IMF mitochondria were found to have higher rates of protein synthesises, enzyme activities and respiration (1).
Explanation:
Answer:
The hydroxide ions decrease.
Explanation:
I got it right on the quiz. This is what I saw. Read this, "Adding water to an acid or base will change its pH. Water is mostly water molecules so adding water to an acid or base reduces the concentration of ions in the solution. When an acidic solution is diluted with water the concentration of H + ions decreases and the pH of the solution increases towards 7."
Hope this helps! Tell me if this is wrong just incase.
Answer:
178 grams
Explanation:
<em>It is known that 1.0 mole of a compound contains Avogadro's number of molecules (6.022 x 10²³).</em>
<em><u>Using cross multiplication:</u></em>
1.0 mol contains → 6.022 x 10²³ molecules.
??? mol contains → 6.3 x 10²⁴ molecules.
∴ The no. of moles of (6.3 x 10²⁴ molecules) of NH₃ = (1.0 mol)(6.3 x 10²⁴ molecules)/(6.022 x 10²³ molecules) = 10.46 mol.
<em>∴ The no. of grams of NH₃ present = no. of moles x molar mass</em> = (10.46 mol)(17.0 g/mol) = <em>177.8 g ≅ 178 g.</em>
It is known that at if a gas is identified to be as ideal
gas then, at STP, the volume of 1 mole of that gas is equal to 22.4 L. Using
this fact and the given volume in this item, we determine the number of moles
as that below.
n =
(11.2 L of argon)(1 mol argon / 22.4 L of argon)
<span> n =
0.5 moles</span>
<span>Answer: 0.5 moles </span>