Explanation:
Becuse the coin has a <em><u>Lesser</u></em><em><u> </u></em><em><u>Density</u></em> than water.
Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
Answer:
E. downward and constant
Explanation:
Freefall is a special case of motion with constant acceleration because the acceleration due to gravity is always constant and downward. This is true even when an object is thrown upward or has zero velocity.
For example, when a ball is thrown up in the air, the ball's velocity is initially upward. Since gravity pulls the object toward the earth with a constant acceleration ggg, the magnitude of velocity decreases as the ball approaches maximum height. At the highest point in its trajectory, the ball has zero velocity, and the magnitude of velocity increases again as the ball falls back toward the earth.
In the circular motion of the hammer, the centripetal force is given by

where m is the mass of the hammer, v its tangential speed and r is the distance from the center of the motion, i.e. the length of the hammer.
Using the data of the problem, we find:
Answer:
3433.5 N
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
m = Mass of person = 70 kg
According to the question
a = Acceleration

Balancing the forces we have

The required force is 3433.5 N