Answer : The correct option is, (a) paramagnetic with two unpaired electrons.
Explanation :
According to the molecular orbital theory, the general molecular orbital configuration will be,
![(\sigma_{1s}),(\sigma_{1s}^*),(\sigma_{2s}),(\sigma_{2s}^*),(\sigma_{2p_z}),[(\pi_{2p_x})=(\pi_{2p_y})],[(\pi_{2p_x}^*)=(\pi_{2p_y}^*)],(\sigma_{2p_z}^*)](https://tex.z-dn.net/?f=%28%5Csigma_%7B1s%7D%29%2C%28%5Csigma_%7B1s%7D%5E%2A%29%2C%28%5Csigma_%7B2s%7D%29%2C%28%5Csigma_%7B2s%7D%5E%2A%29%2C%28%5Csigma_%7B2p_z%7D%29%2C%5B%28%5Cpi_%7B2p_x%7D%29%3D%28%5Cpi_%7B2p_y%7D%29%5D%2C%5B%28%5Cpi_%7B2p_x%7D%5E%2A%29%3D%28%5Cpi_%7B2p_y%7D%5E%2A%29%5D%2C%28%5Csigma_%7B2p_z%7D%5E%2A%29)
As there are 14 electrons present in the given configuration.
The molecular orbital configuration of molecule will be,
![(\sigma_{1s})^2,(\sigma_{1s}^*)^2,(\sigma_{2s})^2,(\sigma_{2s}^*)^2,(\sigma_{2p_z})^2,[(\pi_{2p_x})^1=(\pi_{2p_y})^1],[(\pi_{2p_x}^*)^0=(\pi_{2p_y}^*)^0],(\sigma_{2p_z}^*)^0](https://tex.z-dn.net/?f=%28%5Csigma_%7B1s%7D%29%5E2%2C%28%5Csigma_%7B1s%7D%5E%2A%29%5E2%2C%28%5Csigma_%7B2s%7D%29%5E2%2C%28%5Csigma_%7B2s%7D%5E%2A%29%5E2%2C%28%5Csigma_%7B2p_z%7D%29%5E2%2C%5B%28%5Cpi_%7B2p_x%7D%29%5E1%3D%28%5Cpi_%7B2p_y%7D%29%5E1%5D%2C%5B%28%5Cpi_%7B2p_x%7D%5E%2A%29%5E0%3D%28%5Cpi_%7B2p_y%7D%5E%2A%29%5E0%5D%2C%28%5Csigma_%7B2p_z%7D%5E%2A%29%5E0)
The number of unpaired electron in the given configuration is, 2. So, this is paramagnetic. That means, more the number of unpaired electrons, more paramagnetic.
Hence, the correct option is, (a) paramagnetic with two unpaired electrons.
The Law states that the change in internal energy (U) of the system is equal to the sum of the heat supplied to the system (q) and the work done ON the system (W)
<span>ΔU = q + W </span>
<span>For the first question, 0.653kJ of heat energy is removed from the system (balloon) while 386J of work is done ON the balloon, thus </span>
<span>ΔU = -653J + 386J </span>
<span>=-267J </span>
<span>Thus internal energy decrease by 267J </span>
<span>For the second question, 322J of heat energy is added to the system (gold bar) while no work is done on the gold bar, this is an isochoric/isovolumetric process, thus </span>
<span>ΔU = 322J + 0 </span>
<span>=322J </span>
<span>Thus internal energy increase by 322J</span>
So that people don’t break laws or drive under the influence.
Answer:
1 and 3.
Explanation:
The entropy measures the randomness of the system, as higher is it, as higher is the entropy. The randomness is associated with the movement and the arrangement of the molecules. Thus, if the molecules are moving faster and are more disorganized, the randomness is greater.
So, the entropy (S) of the phases increases by:
S solid < S liquid < S gases.
1. The substance is going from solid to gas, thus the entropy is increasing.
2. The substance is going from a disorganized way (the molecules of I are disorganized) to an organized way (the molecules join together to form I2), thus the entropy is decreasing.
3. The molecules go from an organized way (the atom are joined together) to a disorganized way, thus the entropy increases.
4. The ions are disorganized and react to form a more organized molecule, thus the entropy decreases.
Answer: 238.6 J
Explanation:
According to the law of conservation of energy, energy can neither be created nor be destroyed. It can only be transformed from one form to another.
Endothermic reactions are those in which heat is absorbed by the system and thus the energy of products is higher than the energy of reactants.
For the given reaction:
Energy of A = 85.1 J
Energy of B = 87.9 J
Energy on reactant side = Energy of A + Energy of B + Energy absorbed 85.1 + 87.9 + 104.3 = 277.3 J
Energy on reactant side = Energy on product side = 277.3 J
Energy on product side = Energy of C + Energy of D
277.3 J = 38.7 J + Energy of D
Energy of D = 238.6 J
Thus chemical energy product D must contain is 238.6 J