When plane is going towards Halifax the speed of wind is in the direction of fly
so overall the net speed of the plane will increase
while when he is on the way back the air is opposite to flight so net speed will decrease
now the total time of the journey is 13 hours
out of this 2 hours he spent in mathematics talk
so total time of the fly is 13 - 2 = 11 hours
now we have formula to find the time to travel to Halinex

time taken to reach back

now we have total time


here d= 3000 miles



solving above quadratic equation we will have

so speed of plane will be 550 mph
Answer:
A free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N.
Explanation:
This is because at terminal velocity, the ball stops accelerating and the net force on the ball is zero. For the net force to be zero, equal and opposite forces must act on the ball, so that their resultant force is zero. That is F₁ + F₂ = 0 ⇒ F₁ = -F₂
Since F₁ = 20 N, then F₂ = -F₁ = -20 N
So, if F₁ points upwards since it is positive, then F₂ points downwards since it is negative.
So, a free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N best describes the ball falling at terminal velocity.
Answer:
(b) 10 Wb
Explanation:
Given;
angle of inclination of magnetic field, θ = 30°
initial area of the plane, A₁ = 1 m²
initial magnetic flux through the plane, Φ₁ = 5.0 Wb
Magnetic flux is given as;
Φ = BACosθ
where;
B is the strength of magnetic field
A is the area of the plane
θ is the angle of inclination
Φ₁ = BA₁Cosθ
5 = B(1 x cos30)
B = 5/(cos30)
B = 5.7735 T
Now calculate the magnetic flux through a 2.0 m² portion of the same plane
Φ₂ = BA₂Cosθ
Φ₂ = 5.7735 x 2 x cos30
Φ₂ = 10 Wb
Therefore, the magnetic flux through a 2.0 m² portion of the same plane is is 10 Wb.
Option "b"
Answer:
a) a= 8.33 m/s², T = 12.495 N
, b) a = 2.45 m / s²
Explanation:
a) this is an exercise of Newton's second law. As the upper load is secured by a cable, it cannot be moved, so the lower load is determined by the maximum acceleration.
We apply Newton's second law to the lower charge
fr₁ + fr₂ = ma
The equation for the force of friction is
fr = μ N
Y Axis
N - W₁ –W₂ = 0
N = W₁ + W₂
N = (m₁ + m₂) g
Since the beams are the same, it has the same mass
N = 2 m g
We replace
μ₁ 2mg + μ₂ mg = m a
a = (2μ₁ + μ₂) g
a = (2 0.30 + 0.25) 9.8
a= 8.33 m/s²
Let's look for cable tension with beam 2
T = m₂ a
T = 1500 8.33
T = 12.495 N
b) For maximum deceleration the cable loses tension (T = 0 N), so as this beam has less friction is the one that will move first, we are assuming that the rope is horizontal
fr = m₂ a₂
N- w₂ = 0
N = W₂ = mg
μ₂ mg = m a₂
a = μ₂ g
a = 0.25 9.8
a = 2.45 m / s²

P=25x10^6 andF=750.So plug in everything to solve for A. which is 3x10^-5m^2 OR 0.3mm^2