Answer and Explanation:
Iodine have lower atomic mass than tellurium even though the atomic number of iodine is more than the atomic number of tellurium
This is because the atomic weight of any element is the sum of number of proton and number of neutron, even though the number of proton in iodine is more so but the number of neutron is less as compared to tellurium which makes the tellurium of high atomic mass
Coulomb's law mathematically is:
F = kQ₁Q₂/r²
we integrate this with respect to distance to obtain the expression for energy:
E = kQ₁Q₂/r; where k is the Coulomb's constant = 9 x 10⁹; Q are the charges, r is the seperation
Charge on proton = charge on electron = 1.6 x 10⁻¹⁹ C
E = (9 x 10⁹ x 1.6 x 10⁻¹⁹ x 1.6 x 10⁻¹⁹) / (185 x 10⁻¹²)
E = 1.24 x 10⁻¹⁸ Joules per proton/electron pair
Number of pairs in one mole = 6.02 x 10²³
Energy = 6.02 x 10²³ x 1.24 x 10⁻¹⁸
= 746.5 kJ
First, multiply the mass by the molar mass of neon to find out how many moles of neon there are. Then, multiply by 22.4 to find out how many liters there are.
6.745g Ne x 1 mole Ne/20 g Ne x 22.4 L/1 mole Ne = 7.5544 L
The law of conservation of mass states that mass is neither created nor destroyed. Since we have 2 g/mol of A and 3 g/mol of B then AB should be equal to the sum of their molar mass that is
2 g/mol + 3 g/mol = 5 g/mol AB
for the case of A2B3
A2 = 2 * 2 = 4 g/mol
B3 = 3 * 3 = 9 g/mol
therefore A2B3 = 13 g/mol