Answer:
17.57kg of
and its percentage yield is 81.0%
Explanation:
Through the reaction you can get the theoretical amount of
that must be produced.

If the amount obtained is less than the theoretical amount, it means that the initial sample was not 100% pure. Now the actual amount obtained is compared with the theoretical amount using a percentage
=81.0%
The Lewis structure for H₂CO is shown in the attached picture. The central atom is the carbon. However, I'm not sure which bond you're referring to. There can be two answers. The two C-H bonds are sp³ hybridized because it is a single bond. The C=O bond is sp² hybridized because it is a double bond.
Answer:
Zero
Explanation:
FrBr is an ionic compound
.
Fr is in Group 1. Br is in Group 17.
The charges on the ions are +1 and -1, respectively.
The compound consists of Fr⁺Br⁻ ions.
However, there are equal numbers of + and - charges, so
The overall charge of the compound is zero.
Answer:
Explanation:
As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.
Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>
So, you must just convert the given temperature, 32°F, to kelvin scale.
You can do that in two stages.
- First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80
- Second, convert 0°C to kelvin:
T (K) = T(°C) + 273.15 K= 273.15 K
Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K
Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.