Answer:
I believe it’s the 3rd one.
Explanation:
It’s the only graph where it looks like (2.5,5) was graphed.
A. the insurance company's payment = $14,392
$18240 - $250 = 17990 x 80% = $14,392
b. <span>the 20% copayment
17990 * 20% = $3598
</span>
<span>c. Mary's total cost
$250 + $3598 = $3848
</span>
The question is incorrect.
The correct question is:
Three TAs are grading a final exam.
There are a total of 60 exams to grade.
(c) Suppose again that we are counting the ways to distribute exams to TAs and it matters which students' exams go to which TAs. The TAs grade at different rates, so the first TA will grade 25 exams, the second TA will grade 20 exams and the third TA will grade 15 exams. How many ways are there to distribute the exams?
Answer: 60!/(25!20!15!)
Step-by-step explanation:
The number of ways of arranging n unlike objects in a line is n! that is ‘n factorial’
n! = n × (n – 1) × (n – 2) ×…× 3 × 2 × 1
The number of ways of arranging n objects where p of one type are alike, q of a second type are alike, r of a third type are alike is given as:
n!/p! q! r!
Therefore,
The answer is 60!/25!20!15!
For this question, you need to understand how to divide fractions.First we line up our fractions appropriately:
4/9 ÷ 4/5 = ? (You want to divide 4/9 by 4/5)
4/9 × 5/4 = ? (Now we use the reciprocal of 4/5 and multiply instead of divide)
4 x 5 = 20 and 9 x 4 = 36. (Cross multiply.)
20/36 = 5/9. (Simplify to lowest terms.)
So, 4/9 divided by 4/5 is 5/9!But 5/9 is more than 4/9, so the answer is 0 :PCorrect me if I'm wrong.
Answer:
The coordinates of B is (3, - 5)
Step-by-step explanation:
A(6, 1)
C(2, -7)
Coordinates of point B such that AB = 1/3 × BC
Hence we have;

Therefore BC = 3/4 × AC
Hence, AB = 1/3 × BC = 1/3 × 3/4 × AC = 1/4 × AC
AC = √((6 - 2)² + (1 - (-7))²) = √(16 + 64) = √80 = 4·√5
AB = 1/4 × 4·√5 = √5
Therefore;
AB² = (x - 6)² + (y - 1)² = 5
Slope = (1 - (-7))/(6 - 2) = 2
Hence the y coordinate of B = -7 + sin(tan⁻¹(2)) ×√5 = -5
The x coordinate of B = 2 + cos(tan⁻¹(2)) ×√5 = 3
The coordinates of B = (3, - 5)