Answer:
2014.44 N
Explanation:
mass of spacecraft, m = 1850 kg
distance r = 3 x R
where r be the radius of earth.
g be the acceleration due to gravity on the surface of earth and g' be the acceleration due to gravity at height


g' = g / 9
g' = 9.8 / 9 = 1.089 m/s²
Force of gravity on the space craft
F = m g' = 1850 x 1.089
F = 2014.44 N
Thus, the force of gravity on the space craft at height is 2014.44 N.
By wave particle duality.
Wavelength , λ = h / mv
where h = Planck's constant = 6.63 * 10⁻³⁴ Js, m = mass in kg, v = velocity in m/s.
m = 1kg, v = 4.5 m/s
λ = h / mv
λ = (6.63 * 10⁻³⁴) /(1*4.5)
λ ≈ 1.473 * 10⁻³⁴ m
Option D.
Answer:
The net torque is 0.0372 N m.
Explanation:
A rotational body with constant angular acceleration satisfies the kinematic equation:
(1)
with ω the final angular velocity, ωo the initial angular velocity, α the constant angular acceleration and Δθ the angular displacement (the revolutions the sphere does). To find the angular acceleration we solve (1) for α:

Because the sphere stops the final angular velocity is zero, it's important all quantities in the SI so 2.40 rev/s = 15.1 rad/s and 18.2 rev = 114.3 rad, then:

The negative sign indicates the sphere is slowing down as we expected.
Now with the angular acceleration we can use Newton's second law:
(2)
with ∑τ the net torque and I the moment of inertia of the sphere, for a sphere that rotates about an axle through its center its moment of inertia is:
With M the mass of the sphere an R its radius, then:

Then (2) is:
