answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iogann1982 [59]
2 years ago
4

The image shows a dam.

Physics
2 answers:
juin [17]2 years ago
6 0
If you don’t mark this Brainliest, you will feel guilty for the rest of your life
Answer: Point X= Potential, Point Y= Kinetic
Explanation: As the water builds up, it is not moving (potential), and as the water flows, it is moving (kinetic)
ss7ja [257]2 years ago
6 0
The person above me is correct!! i just need points i’m taking 3 post tests today
You might be interested in
The three forces acting on a hot-air balloon that is moving vertically are its weight, the force due to air resistance and the u
Aleksandr [31]
Let
upthrust = T
weight = W = mg
Air resistance = F

When balloon is descending, air resistance acts upwards (positive)
By Newton's first law, the net force on the balloon is zero, or
T+F-W=0......................(1)

Let w=weight of material dumped so that balloon now travels upwards at constant speed.
Air resistance acts against motion, namely downwards.
The Newton's equation now reads
T-F-(W-w)=0................(2)

Subtract (2) from (1)
T+F-W - (T-F-(W-w)) = 0
Solve for w
w=2F, or
the WEIGHT of material to be released equals twice the resistance of air.
3 0
2 years ago
At time t, gives the position of a 3.0 kg particle relative to the origin of an xy coordinate system ( ModifyingAbove r With rig
Elena-2011 [213]

Complete Question

  The complete Question is shown on the first uploaded image

Answer:

a

The torque acting on the particle is  \tau = 48t \r k

b

The magnitude of the angular momentum increases relative to the origin

Explanation:

From the equation we are told that

      The position of the particle is   \= r = 4.0 t^2 \r i - (2.0 t - 6.0 t^2 ) \r j

       The mass of the particle is m = 3.0 kg

        The time is  t

   

The torque acting on  the particle is mathematically represented as

           \tau = \frac{ d \r l }{dt}

where \r l is change in angular momentum which is mathematically represented as

       \r l = m (\r r \ \ X  \ \ \r v)

Where X mean cross- product

   \r v is the velocity which is mathematically represented as

           \r v = \frac{d \r r }{dt}

Substituting for  \r r

           \r v = \frac{d }{dt} [ 4 t^2 \r i - (2t + 6t^2 ) \r j]

           \r v =  8t \r i - (2 + 12 t) \r j

Now the cross product of \r r \ and \ \r v is  mathematically evaluated as    

          \r r  \  \ X \ \ \r v = \left[\begin{array}{ccc}{\r i}&{\r j}&{\r k}\\{4t^2}&{-2t -6t^2}&0\\{8t}&{-2 -12t}&0\end{array}\right]

                       = 0 \r i + 0 \r j + (- 8t^2 -48t^3 + 16t^2 + 48t^3 ) \r k

                      \r r \ \  X \ \ \r v = 8t^2 \r k

So the angular momentum becomes

       \r l = m (8t^2 \r k)

Substituting for m

      \r l = 3 *  (8t^2 \r k)

      \r l =24t^2  \r k

Substituting into equation for torque

       \tau = \frac{d}{dt} [24t^2 \r k]

       \tau = 48t \r k

The magnitude of the angular momentum can be evaluated mathematically as

        |\r l| = \sqrt{(24 t^2) ^2}

        |\r l| = 24 t^2

From the is equation we see that the magnitude of the angular momentum is varies directly with square of the time so it would relative to the origin because at the origin t= 0s and we move out from origin t increases hence angular momentum increases also

4 0
2 years ago
(a) Calculate the absolute pressure at the bottom of a fresh- water lake at a depth of 27.5 m. Assume the density of the water i
ddd [48]

Answer:

a) P = 370.993\,kPa, b) F = 25.948\,kN

Explanation:

a) The absolute pressure at a depth of 27.5 meters is:

P = P_{atm} + P_{man}

P = 101.3\,kPa + \left(1000\,\frac{kg}{m^{3}}\right)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (27.5\,m)\cdot \left(\frac{1\,kPa}{1000\,Pa} \right)

P = 370.993\,kPa

b) The force exerted by the water is:

F = (P - P_{atm})\cdot A

F = (370.993\,kPa-101.3\,kPa)\cdot \left(\frac{\pi}{4} \right)\cdot (0.35\,m)^{2}

F = 25.948\,kN

5 0
2 years ago
Read 2 more answers
A thick steel sheet of area 100 in.2 is exposed to air near the ocean. After a one-year period it was found to experience a weig
vladimir1956 [14]

Answer:

Therefore the rate of corrosion 37.4 mpy and 0.952 mm/yr.

Explanation:

The corrosion rate is the rate of material remove.The formula for calculating CPR or corrosion penetration rate is

CPR=\frac{KW}{DAT}

K= constant depends on the system of units used.

W= weight =485 g

D= density =7.9 g/cm³

A = exposed specimen area =100 in² =6.452 cm²

K=534 to give CPR in mpy

K=87.6  to give CPR in mm/yr

mpy

CPR=\frac{KW}{DAT}

        =\frac{534\times( 485g)\times( 10^3mg/g)}{(7.9g/cm^3) \times (100in^2)\times (24h/day)\times (365day/yr)\times 1yr}

        =37.4mpy

mm/yr

CPR=\frac{KW}{DAT}

        =\frac{87.6\times (485g)\times (10^3 mg/g)}{(7.9g/cm^3)\times (100in^2)\times(2.54cm/in)^2\times (24h/day)\times (365day/yr)\times 1yr}

       =0.952 mm/yr

Therefore the rate of corrosion 37.4 mpy and 0.952 mm/yr.

3 0
2 years ago
Two negative charges that are both -0.3C push each other apart with a force of 19.2 N. How far apart are the two charges?
Paha777 [63]
<span>Using Coulomb's law: k*(-0.3)*(-0.3)/(d^2)=19.2 D is the distance between the two negative charges</span>
8 0
2 years ago
Other questions:
  • Moving water, like that of a river, carries sediment as it moves along its bed. The faster the water flows, the more sediment th
    10·2 answers
  • A long-distance swimmer is able to swim through still water at 4.0 km/h. She wishes to try to swim from Port Angeles, Washington
    5·1 answer
  • 17. The edges of a rectangular solid have these measures: 1.5 feet by 1½ feet by 3 inches. What is its volume in cubic inches? a
    11·1 answer
  • You are working on charge-storage devices for a research center. Your goal is to store as much charge on a given device as possi
    5·1 answer
  • Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of -2.0 µC; sphere B carries a charge of -6.0 µC;
    6·1 answer
  • The total mechanical energy of a simple harmonic oscillating system is
    10·1 answer
  • The natural tendency is for entropy to___ over time.
    6·2 answers
  • A thug pushes some 100 kg punk with 300 N of force. How much is the punk accelerated?
    6·1 answer
  • A positively charged particle Q1 = +45 nC is held fixed at the origin. A second charge Q2 of mass m = 4.5 μg is floating a dista
    10·1 answer
  • Ever tried to stop a 150-pound (68 kg) cannonball fired towards you at 30 mph (48 km/hr.)? No, probably not. But you may have tr
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!