One: looks to be correct for both answers. Certainly the first one is. The second depends on your other choices. But military use is one.
Two: is correct. Pd has (in this case) an atomic mass of 114 and its number is 46
Three: Even with my slop numbers, 4.98 is the answer (although I get 4.99 but again, my numbers are pretty sloppy).
Four: Slop numbers say 78.3, but 78 is the right answer.
Five: Slop numbers agree with Al2S3. I think that's D
They are all correct. Very Fine Work.
Answer:
The correct answer is b movement between different compartments(Such as between water and air).
Explanation:
The partitioning of a particular substance refers to the distribution of that substance into different compartments.
By the same way partitioning of toxic compounds in the environment refers to movement of toxic substances between different compartments of environment which includes air,water etc.
The molarity of a solution equals to the mole number of the solute/the volume of the solution. For NH4Br, we know that the mole mass is 98. So the molarity is (14/98) mol /0.15 L=0.95 mol/L.
Answer is: 8568.71 of baking soda.
Balanced chemical reaction: H₂SO₄ + 2NaHCO₃ → Na₂SO₄ + 2CO₂ + 2H₂O.
V(H₂SO₄) = 17 L; volume of the sulfuric acid.
c(H₂SO₄) = 3.0 M, molarity of sulfuric acid.
n(H₂SO₄) = V(H₂SO₄) · c(H₂SO₄).
n(H₂SO₄) = 17 L · 3 mol/L.
n(H₂SO₄) = 51 mol; amount of sulfuric acid.
From balanced chemical reaction: n(H₂SO₄) : n(NaHCO₃) = 1 :2.
n(NaHCO₃) = 2 · 51 mol.
n(NaHCO₃) = 102 mol, amount of baking soda.
m(NaHCO₃) = n(NaHCO₃) · M(NaHCO₃).
m(NaHCO₃) = 102 mol · 84.007 g/mol.
m(NaHCO₃) = 8568.714 g; mass of baking soda.
potential energy with the heat given to the food