The greatest amount of energy released per gram of reactants occurs during a (1) redox reaction, although it should be noted that there are exceptions depending on environment.
In NaMnO₄, Mn has the highest oxidation number.
The question is incomplete, the complete question is;
Which of the following species contains manganese with the highest oxidation number?
A) Mn
B) MnF₂
C) Mn₃(PO₄)₂
D) MnCl₄
E) NaMnO₄
In order to ascertain the specie that contains manganese with the highest oxidation number, we must calculate the oxidation number of manganese in each of the species one after the other.
1) For Mn, the oxidation number of Mn is zero because the atom is uncombined.
2) For MnF₂;
Mn has an oxidation number of +2
3) For Mn₃(PO₄)₂
Mn has an oxidation number of +2
4) For MnCl₄
Mn has an oxidation number of +4
5) For NaMnO₄
Mn has an oxidation number of +7
Hence in NaMnO₄, Mn has the highest oxidation number.
Learn more: brainly.com/question/10079361
Answer: The temperature rise is 
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed by ice = 5280 J
m = mass of ice = 2.40 kg = 2400 g (1kg=1000g)
c = heat capacity of water = 
Initial temperature =
Final temperature =
Change in temperature ,
Putting in the values, we get:


Thus the temperature rise is 
The ore contains 55.4% calcium phosphate (related to the mineral apatite) so the amount of Ca3(PO4)2 is 55.4%x=1000g so x=1000/0.554= 1.805kg. Now for the % of P in this amount of calcium phosphate, use all the masses of the elements in Ca3PO4= Ca=40.078 x 3= 120.23 and (PO4)2= (30.974+64)2=189.95 (NB oxygen is 16 mass x 4 =64) so the total mass is 310.2 and we have 61.95 of P (Pmass x 2) so 61.95/3102.= 0.19 or 19% P. So of the 1.805 x 0.19= 0.34kg of phosphorus.
Remember that density refers to the "mass per unit volume" of an object.
So, if an object had a mass of 100 grams and a volume of 100 milliliters, the density would be 100 grams / 100 ml.
In the question, water on the surface of the scale would add weight, so the mass of the object that you're weighing would appear to be heavier than it really is. If that happens, you'll incorrectly assume that the density is GREATER than it really is
As an example, suppose that there was 5 ml of water on the surface of the scale. Water has a density of 1 gram per milliliter (1 g/ml) so the water would add 5 grams to the object's weight. If we use the example above, the mass of the object would seem to be 105 grams, rather than 100 grams. So, you would calculate:
density = mass / volume
density = 105 grams / 100 ml
density = 1.05 g/ml
The effect on density would be that it would erroneously appear to be greater
Hope this helps!
Good luck